Spaces:
Running
on
Zero
Running
on
Zero
#!/usr/bin/env python | |
from __future__ import annotations | |
import os | |
import random | |
import gradio as gr | |
import numpy as np | |
import PIL.Image | |
import spaces | |
import torch | |
from diffusers import UniDiffuserPipeline | |
DESCRIPTION = "# [UniDiffuser](https://github.com/thu-ml/unidiffuser)" | |
if not torch.cuda.is_available(): | |
DESCRIPTION += "\n<p>Running on CPU 🥶</p>" | |
MAX_SEED = np.iinfo(np.int32).max | |
def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: | |
if randomize_seed: | |
seed = random.randint(0, MAX_SEED) | |
return seed | |
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu") | |
if torch.cuda.is_available(): | |
pipe = UniDiffuserPipeline.from_pretrained("thu-ml/unidiffuser-v1", torch_dtype=torch.float16) | |
pipe.to(device) | |
def run( | |
mode: str, | |
prompt: str, | |
image: PIL.Image.Image | None, | |
seed: int = 0, | |
num_steps: int = 20, | |
guidance_scale: float = 8.0, | |
) -> tuple[PIL.Image.Image | None, str]: | |
generator = torch.Generator(device=device).manual_seed(seed) | |
if image is not None: | |
image = image.resize((512, 512)) | |
if mode == "t2i": | |
pipe.set_text_to_image_mode() | |
sample = pipe(prompt=prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
return sample.images[0], "" | |
elif mode == "i2t": | |
pipe.set_image_to_text_mode() | |
sample = pipe(image=image, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
return None, sample.text[0] | |
elif mode == "joint": | |
pipe.set_joint_mode() | |
sample = pipe(num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
return sample.images[0], sample.text[0] | |
elif mode == "i": | |
pipe.set_image_mode() | |
sample = pipe(num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
return sample.images[0], "" | |
elif mode == "t": | |
pipe.set_text_mode() | |
sample = pipe(num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
return None, sample.text[0] | |
elif mode == "i2t2i": | |
pipe.set_image_to_text_mode() | |
sample = pipe(image=image, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
pipe.set_text_to_image_mode() | |
sample = pipe( | |
prompt=sample.text[0], | |
num_inference_steps=num_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
) | |
return sample.images[0], "" | |
elif mode == "t2i2t": | |
pipe.set_text_to_image_mode() | |
sample = pipe(prompt=prompt, num_inference_steps=num_steps, guidance_scale=guidance_scale, generator=generator) | |
pipe.set_image_to_text_mode() | |
sample = pipe( | |
image=sample.images[0], | |
num_inference_steps=num_steps, | |
guidance_scale=guidance_scale, | |
generator=generator, | |
) | |
return None, sample.text[0] | |
else: | |
raise ValueError | |
def create_demo(mode_name: str) -> gr.Blocks: | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
mode = gr.Dropdown( | |
label="Mode", | |
choices=[ | |
"t2i", | |
"i2t", | |
"joint", | |
"i", | |
"t", | |
"i2t2i", | |
"t2i2t", | |
], | |
value=mode_name, | |
visible=False, | |
) | |
prompt = gr.Text(label="Prompt", max_lines=1, visible=mode_name in ["t2i", "t2i2t"]) | |
image = gr.Image(label="Input image", type="pil", visible=mode_name in ["i2t", "i2t2i"]) | |
run_button = gr.Button("Run") | |
with gr.Accordion("Advanced options", open=False): | |
seed = gr.Slider( | |
label="Seed", | |
minimum=0, | |
maximum=MAX_SEED, | |
step=1, | |
value=0, | |
) | |
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) | |
num_steps = gr.Slider( | |
label="Steps", | |
minimum=1, | |
maximum=100, | |
value=20, | |
step=1, | |
) | |
guidance_scale = gr.Slider( | |
label="Guidance Scale", | |
minimum=0.1, | |
maximum=30.0, | |
value=8.0, | |
step=0.1, | |
) | |
with gr.Column(): | |
result_image = gr.Image(label="Generated image", visible=mode_name in ["t2i", "i", "joint", "i2t2i"]) | |
result_text = gr.Text(label="Generated text", visible=mode_name in ["i2t", "t", "joint", "t2i2t"]) | |
gr.on( | |
triggers=[prompt.submit, run_button.click], | |
fn=randomize_seed_fn, | |
inputs=[seed, randomize_seed], | |
outputs=seed, | |
api_name=False, | |
concurrency_limit=None, | |
).then( | |
fn=run, | |
inputs=[ | |
mode, | |
prompt, | |
image, | |
seed, | |
num_steps, | |
guidance_scale, | |
], | |
outputs=[ | |
result_image, | |
result_text, | |
], | |
api_name=f"run_{mode_name}", | |
concurrency_limit=1, | |
concurrency_id="gpu", | |
) | |
return demo | |
with gr.Blocks(css="style.css") as demo: | |
gr.Markdown(DESCRIPTION) | |
gr.DuplicateButton( | |
value="Duplicate Space for private use", | |
elem_id="duplicate-button", | |
visible=os.getenv("SHOW_DUPLICATE_BUTTON") == "1", | |
) | |
with gr.Tabs(): | |
with gr.TabItem("text2image"): | |
create_demo("t2i") | |
with gr.TabItem("image2text"): | |
create_demo("i2t") | |
with gr.TabItem("image variation"): | |
create_demo("i2t2i") | |
with gr.TabItem("joint generation"): | |
create_demo("joint") | |
with gr.TabItem("image generation"): | |
create_demo("i") | |
with gr.TabItem("text generation"): | |
create_demo("t") | |
with gr.TabItem("text variation"): | |
create_demo("t2i2t") | |
if __name__ == "__main__": | |
demo.queue(max_size=20).launch() | |