Spaces:
Runtime error
Runtime error
from transformers import AutoTokenizer, AutoModelForCausalLM | |
import torch | |
import time | |
class Gemma2B: | |
def __init__(self): | |
self.model_name = "google/gemma-2b-it" | |
self.tokenizer = AutoTokenizer.from_pretrained(self.model_name) | |
self.model = AutoModelForCausalLM.from_pretrained(self.model_name, torch_dtype=torch.bfloat16, ) | |
def inference_cpu(self, chat_template, max_new_tokens=200): | |
chat = self.tokenizer.apply_chat_template(chat_template, tokenize=False, | |
add_generation_prompt=True) | |
input_ids = self.tokenizer(chat, return_tensors="pt") | |
outputs = self.model.generate(**input_ids, max_length=300, max_new_tokens=300) | |
return self.tokenizer.decode(outputs[0]) | |
if __name__ == "__main__": | |
llm = Gemma2B() | |
start_time_cpu = time.time() | |
print(llm.inference_cpu( | |
[ | |
{"role": "user", "content": f"hello"}] | |
)) | |
end_time_cpu = time.time() | |
print(f"CPU Inference Time: {end_time_cpu - start_time_cpu}") | |