thuyentruong commited on
Commit
6115469
1 Parent(s): dbfdf1a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +9 -6
app.py CHANGED
@@ -12,9 +12,9 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
- processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
16
 
17
- model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
@@ -22,12 +22,16 @@ speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze
22
 
23
 
24
  def translate(audio):
25
- outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate"})
 
26
  return outputs["text"]
27
 
28
 
29
  def synthesise(text):
30
- inputs = processor(text=text, return_tensors="pt")
 
 
 
31
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
32
  return speech.cpu()
33
 
@@ -43,7 +47,6 @@ title = "Cascaded STST"
43
  description = """
44
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
45
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
46
-
47
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
48
  """
49
 
@@ -69,4 +72,4 @@ file_translate = gr.Interface(
69
  with demo:
70
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
71
 
72
- demo.launch()
 
12
  asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
13
 
14
  # load text-to-speech checkpoint and speaker embeddings
15
+ processor = SpeechT5Processor.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl")
16
 
17
+ model = SpeechT5ForTextToSpeech.from_pretrained("sanchit-gandhi/speecht5_tts_vox_nl").to(device)
18
  vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
19
 
20
  embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
 
22
 
23
 
24
  def translate(audio):
25
+ outputs = asr_pipe(audio, max_new_tokens=256
26
+ , generate_kwargs={"task": "transcribe", "language": "dutch"})
27
  return outputs["text"]
28
 
29
 
30
  def synthesise(text):
31
+ inputs = processor(text=text, return_tensors="pt",
32
+ max_length=600,
33
+ truncation=True,
34
+ )
35
  speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
36
  return speech.cpu()
37
 
 
47
  description = """
48
  Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in English. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
49
  [SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
 
50
  ![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
51
  """
52
 
 
72
  with demo:
73
  gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
74
 
75
+ demo.launch()