thuyentruong
commited on
Commit
•
8c5de0d
1
Parent(s):
8fe55e6
Update app.py
Browse files
app.py
CHANGED
@@ -3,7 +3,9 @@ import numpy as np
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
-
from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor,
|
|
|
|
|
7 |
|
8 |
|
9 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
@@ -12,37 +14,28 @@ device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
12 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
13 |
|
14 |
# load text-to-speech checkpoint and speaker embeddings
|
15 |
-
|
16 |
-
|
|
|
17 |
|
18 |
-
|
19 |
-
|
|
|
20 |
|
21 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
22 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
23 |
|
24 |
|
25 |
def translate(audio):
|
26 |
-
|
27 |
-
# Note that using task=translate will translate to English instead.
|
28 |
-
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "transcribe", "language": "dutch"})
|
29 |
return outputs["text"]
|
30 |
|
31 |
|
32 |
def synthesise(text):
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
# max_length=200,
|
38 |
-
max_length=598,
|
39 |
-
truncation=True,
|
40 |
-
# padding=True,
|
41 |
-
return_tensors="pt"
|
42 |
-
)
|
43 |
-
# inputs = processor(text=text, return_tensors="pt")
|
44 |
-
speech = model.generate_speech(inputs["input_ids"].to(device), speaker_embeddings.to(device), vocoder=vocoder)
|
45 |
-
return speech.cpu()
|
46 |
|
47 |
|
48 |
def speech_to_speech_translation(audio):
|
@@ -54,15 +47,16 @@ def speech_to_speech_translation(audio):
|
|
54 |
|
55 |
title = "Cascaded STST"
|
56 |
description = """
|
57 |
-
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in
|
58 |
-
[SpeechT5 TTS](https://huggingface.co/
|
59 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
60 |
"""
|
|
|
61 |
demo = gr.Blocks()
|
62 |
|
63 |
mic_translate = gr.Interface(
|
64 |
fn=speech_to_speech_translation,
|
65 |
-
inputs=gr.
|
66 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
67 |
title=title,
|
68 |
description=description,
|
@@ -70,7 +64,7 @@ mic_translate = gr.Interface(
|
|
70 |
|
71 |
file_translate = gr.Interface(
|
72 |
fn=speech_to_speech_translation,
|
73 |
-
inputs=gr.Audio(
|
74 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
75 |
examples=[["./example.wav"]],
|
76 |
title=title,
|
@@ -80,4 +74,4 @@ file_translate = gr.Interface(
|
|
80 |
with demo:
|
81 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
82 |
|
83 |
-
demo.launch()
|
|
|
3 |
import torch
|
4 |
from datasets import load_dataset
|
5 |
|
6 |
+
# from transformers import SpeechT5ForTextToSpeech, SpeechT5HifiGan, SpeechT5Processor,
|
7 |
+
from transformers import pipeline
|
8 |
+
from transformers import VitsModel, VitsTokenizer
|
9 |
|
10 |
|
11 |
device = "cuda:0" if torch.cuda.is_available() else "cpu"
|
|
|
14 |
asr_pipe = pipeline("automatic-speech-recognition", model="openai/whisper-base", device=device)
|
15 |
|
16 |
# load text-to-speech checkpoint and speaker embeddings
|
17 |
+
# processor = SpeechT5Processor.from_pretrained("microsoft/speecht5_tts")
|
18 |
+
# model = SpeechT5ForTextToSpeech.from_pretrained("microsoft/speecht5_tts").to(device)
|
19 |
+
# vocoder = SpeechT5HifiGan.from_pretrained("microsoft/speecht5_hifigan").to(device)
|
20 |
|
21 |
+
# load text-to-speach checkpoint for german language
|
22 |
+
model = VitsModel.from_pretrained("Matthijs/mms-tts-deu")
|
23 |
+
tokenizer = VitsTokenizer.from_pretrained("Matthijs/mms-tts-deu")
|
24 |
|
25 |
embeddings_dataset = load_dataset("Matthijs/cmu-arctic-xvectors", split="validation")
|
26 |
speaker_embeddings = torch.tensor(embeddings_dataset[7306]["xvector"]).unsqueeze(0)
|
27 |
|
28 |
|
29 |
def translate(audio):
|
30 |
+
outputs = asr_pipe(audio, max_new_tokens=256, generate_kwargs={"task": "translate", "language": "de"})
|
|
|
|
|
31 |
return outputs["text"]
|
32 |
|
33 |
|
34 |
def synthesise(text):
|
35 |
+
inputs = tokenizer(text=text, return_tensors="pt")
|
36 |
+
with torch.no_grad():
|
37 |
+
speech = model(inputs["input_ids"].to(device))
|
38 |
+
return speech.audio[0]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
39 |
|
40 |
|
41 |
def speech_to_speech_translation(audio):
|
|
|
47 |
|
48 |
title = "Cascaded STST"
|
49 |
description = """
|
50 |
+
Demo for cascaded speech-to-speech translation (STST), mapping from source speech in any language to target speech in German. Demo uses OpenAI's [Whisper Base](https://huggingface.co/openai/whisper-base) model for speech translation, and Microsoft's
|
51 |
+
[SpeechT5 TTS](https://huggingface.co/microsoft/speecht5_tts) model for text-to-speech:
|
52 |
![Cascaded STST](https://huggingface.co/datasets/huggingface-course/audio-course-images/resolve/main/s2st_cascaded.png "Diagram of cascaded speech to speech translation")
|
53 |
"""
|
54 |
+
|
55 |
demo = gr.Blocks()
|
56 |
|
57 |
mic_translate = gr.Interface(
|
58 |
fn=speech_to_speech_translation,
|
59 |
+
inputs=gr.Audio(sources="microphone", type="filepath"),
|
60 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
61 |
title=title,
|
62 |
description=description,
|
|
|
64 |
|
65 |
file_translate = gr.Interface(
|
66 |
fn=speech_to_speech_translation,
|
67 |
+
inputs=gr.Audio(sources="upload", type="filepath"),
|
68 |
outputs=gr.Audio(label="Generated Speech", type="numpy"),
|
69 |
examples=[["./example.wav"]],
|
70 |
title=title,
|
|
|
74 |
with demo:
|
75 |
gr.TabbedInterface([mic_translate, file_translate], ["Microphone", "Audio File"])
|
76 |
|
77 |
+
demo.launch()
|