File size: 5,907 Bytes
0b15f14
 
140793a
9234f11
0b15f14
140793a
fca63f5
0b15f14
 
140793a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83a6345
 
140793a
 
 
 
 
 
 
83a6345
140793a
 
 
 
 
 
 
83a6345
140793a
83a6345
140793a
 
07466ed
 
b525961
 
 
 
 
 
 
 
 
 
 
07466ed
 
140793a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f441bd4
140793a
 
 
 
 
 
 
f441bd4
 
140793a
 
 
 
 
 
 
 
 
 
 
 
0b15f14
140793a
0b15f14
140793a
 
 
9234f11
736d538
9234f11
140793a
2c2fdca
524a2f6
 
140793a
614686e
140793a
2c2fdca
140793a
 
 
8c8a97c
140793a
 
 
 
 
 
9234f11
140793a
 
 
 
9234f11
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
import os

import gradio as gr
from huggingface_hub import InferenceClient

HF_TOKEN = os.environ.get("HF_TOKEN", None)
API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-180B-chat"
BOT_NAME = "Falcon"

STOP_SEQUENCES = ["\nUser:", "<|endoftext|>", " User:", "###"]

EXAMPLES = [
    ["Hey Falcon! Any recommendations for my holidays in Abu Dhabi?"],
    ["What's the Everett interpretation of quantum mechanics?"],
    ["Give me a list of the top 10 dive sites you would recommend around the world."],
    ["Can you tell me more about deep-water soloing?"],
    ["Can you write a short tweet about the release of our latest AI model, Falcon LLM?"]
    ]

client = InferenceClient(
    API_URL,
    headers={"Authorization": f"Bearer {HF_TOKEN}"},
)

def format_prompt(message, history, system_prompt):
  prompt = ""
  if system_prompt:
    prompt += f"System: {system_prompt}\n"
  for user_prompt, bot_response in history:
    prompt += f"User: {user_prompt}\n"
    prompt += f"Falcon: {bot_response}\n" # Response already contains "Falcon: "
  prompt += f"""User: {message}
Falcon:"""
  return prompt

seed = 42

def generate(
    prompt, history, system_prompt="", temperature=0.9, max_new_tokens=256, top_p=0.95, repetition_penalty=1.0,
):
    temperature = float(temperature)
    if temperature < 1e-2:
        temperature = 1e-2
    top_p = float(top_p)
    global seed
    generate_kwargs = dict(
        temperature=temperature,
        max_new_tokens=max_new_tokens,
        top_p=top_p,
        repetition_penalty=repetition_penalty,
        stop_sequences=STOP_SEQUENCES,
        do_sample=True,
        seed=seed,
    )
    seed = seed + 1
    formatted_prompt = format_prompt(prompt, history, system_prompt)

    try:
        stream = client.text_generation(formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
        output = ""

        for response in stream:
            output += response.token.text
    
            for stop_str in STOP_SEQUENCES:
                if output.endswith(stop_str):
                    output = output[:-len(stop_str)]
                    output = output.rstrip()
                    yield output
            yield output
    except Exception as e:
        raise gr.Error(f"Error while generating: {e}")
    return output


additional_inputs=[
    gr.Textbox("", label="Optional system prompt"),
    gr.Slider(
        label="Temperature",
        value=0.9,
        minimum=0.0,
        maximum=1.0,
        step=0.05,
        interactive=True,
        info="Higher values produce more diverse outputs",
    ),
    gr.Slider(
        label="Max new tokens",
        value=256,
        minimum=0,
        maximum=3000,
        step=64,
        interactive=True,
        info="The maximum numbers of new tokens",
    ),
    gr.Slider(
        label="Top-p (nucleus sampling)",
        value=0.90,
        minimum=0.01,
        maximum=0.99,
        step=0.05,
        interactive=True,
        info="Higher values sample more low-probability tokens",
    ),
    gr.Slider(
        label="Repetition penalty",
        value=1.2,
        minimum=1.0,
        maximum=2.0,
        step=0.05,
        interactive=True,
        info="Penalize repeated tokens",
    )
]


with gr.Blocks() as demo:
    with gr.Row():
        with gr.Column(scale=2):
            gr.Image("better_banner.jpeg", elem_id="banner-image", show_label=False)
        with gr.Column(scale=5):
            gr.Markdown(
                """# Falcon-180B Demo

                **Chat with [Falcon-180B-Chat](https://huggingface.co/tiiuae/falcon-180b-chat), brainstorm ideas, discuss your holiday plans, and more!**
                
                ✨ This demo is powered by [Falcon-180B](https://huggingface.co/tiiuae/falcon-180B) and finetuned on a mixture of [Ultrachat](https://huggingface.co/datasets/stingning/ultrachat), [Platypus](https://huggingface.co/datasets/garage-bAInd/Open-Platypus) and [Airoboros](https://huggingface.co/datasets/jondurbin/airoboros-2.1). [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b) is a state-of-the-art large language model built by the [Technology Innovation Institute](https://www.tii.ae) in Abu Dhabi. It is trained on 3.5 trillion tokens (including [RefinedWeb](https://huggingface.co/datasets/tiiuae/falcon-refinedweb)) and available under the [Falcon-180B TII License](https://huggingface.co/spaces/tiiuae/falcon-180b-license/blob/main/LICENSE.txt). It currently holds the 🥇 1st place on the [🤗 Open LLM leaderboard](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) for a pretrained model. 
                
                🧪 This is only a **first experimental preview**: we intend to provide increasingly capable versions of Falcon in the future, based on improved datasets and RLHF/RLAIF.
                
                👀 **Learn more about Falcon LLM:** [falconllm.tii.ae](https://falconllm.tii.ae/)
                
                ➡️️ **Intended Use**: this demo is intended to showcase an early finetuning of [Falcon-180B](https://huggingface.co/tiiuae/falcon-180b), to illustrate the impact (and limitations) of finetuning on a dataset of conversations and instructions. We encourage the community to further build upon the base model, and to create even better instruct/chat versions!
                
                ⚠️ **Limitations**: the model can and will produce factually incorrect information, hallucinating facts and actions. As it has not undergone any advanced tuning/alignment, it can produce problematic outputs, especially if prompted to do so. Finally, this demo is limited to a session length of about 1,000 words.
                """
            )

    gr.ChatInterface(
        generate,
        examples=EXAMPLES,
        additional_inputs=additional_inputs,
    ) 

demo.queue(api_open=False).launch(show_api=False)