import fnmatch import gradio as gr import pandas as pd import plotly.express as px from rapidfuzz import fuzz import re def load_leaderboard(): # Load validation / test CSV files results_csv_files = { 'imagenet': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet.csv', 'real': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-real.csv', 'v2': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenetv2-matched-frequency.csv', 'sketch': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-sketch.csv', 'a': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-a.csv', 'r': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/results-imagenet-r.csv', } # Load benchmark CSV files benchmark_csv_files = { 'amp-nchw-pt240-cu124-rtx4090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090.csv', 'amp-nhwc-pt240-cu124-rtx4090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx4090.csv', 'amp-nchw-pt240-cu124-rtx4090-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx4090-dynamo.csv', 'amp-nchw-pt240-cu124-rtx3090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nchw-pt240-cu124-rtx3090.csv', 'amp-nhwc-pt240-cu124-rtx3090': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-amp-nhwc-pt240-cu124-rtx3090.csv', 'fp32-nchw-pt240-cpu-i9_10940x-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i9_10940x-dynamo.csv', 'fp32-nchw-pt240-cpu-i7_12700h-dynamo': 'https://raw.githubusercontent.com/huggingface/pytorch-image-models/main/results/benchmark-infer-fp32-nchw-pt240-cpu-i7_12700h-dynamo.csv', } dataframes = {name: pd.read_csv(url) for name, url in results_csv_files.items()} bench_dataframes = {name: pd.read_csv(url) for name, url in benchmark_csv_files.items()} bench_dataframes = {name: df for name, df in bench_dataframes.items() if 'infer_gmacs' in df.columns} # Clean up dataframes remove_column_names = ["top1_err", "top5_err", "top1_diff", "top5_diff", "rank_diff", "param_count"] for df in dataframes.values(): for col in remove_column_names: if col in df.columns: df.drop(columns=[col], inplace=True) # Rename / process results columns for name, df in dataframes.items(): df.rename(columns={"top1": f"{name}_top1", "top5": f"{name}_top5"}, inplace=True) df['arch_name'] = df['model'].apply(lambda x: x.split('.')[0]) # Process benchmark dataframes for name, df in bench_dataframes.items(): df['arch_name'] = df['model'] df.rename(columns={'infer_img_size': 'img_size'}, inplace=True) # Merge all result dataframes result = dataframes['imagenet'] for name, df in dataframes.items(): if name != 'imagenet': result = pd.merge(result, df, on=['arch_name', 'model', 'img_size', 'crop_pct', 'interpolation'], how='outer') # Calculate average scores top1_columns = [col for col in result.columns if col.endswith('_top1') and not col == 'a_top1'] top5_columns = [col for col in result.columns if col.endswith('_top5') and not col == 'a_top5'] result['avg_top1'] = result[top1_columns].mean(axis=1) result['avg_top5'] = result[top5_columns].mean(axis=1) # Create fully merged dataframes for each benchmark set merged_dataframes = {} for bench_name, bench_df in bench_dataframes.items(): merged_df = pd.merge(result, bench_df, on=['arch_name', 'img_size'], how='left', suffixes=('', '_benchmark')) # Calculate TFLOP/s merged_df['infer_tflop_s'] = merged_df['infer_samples_per_sec'] * merged_df['infer_gmacs'] * 2 / 1000 # Reorder columns first_columns = ['model', 'img_size', 'avg_top1', 'avg_top5'] other_columns = [col for col in merged_df.columns if col not in first_columns] merged_df = merged_df[first_columns + other_columns].copy(deep=True) # Drop columns that are no longer needed / add too much noise merged_df.drop('arch_name', axis=1, inplace=True) merged_df.drop('crop_pct', axis=1, inplace=True) merged_df.drop('interpolation', axis=1, inplace=True) merged_df.drop('model_benchmark', axis=1, inplace=True) merged_df['infer_usec_per_sample'] = 1e6 / merged_df.infer_samples_per_sec merged_df['highlighted'] = False merged_df = merged_df.round(2) merged_dataframes[bench_name] = merged_df return merged_dataframes REGEX_PREFIX = "re:" def auto_match(pattern, text): # Check if it's a regex pattern (starts with 're:') if pattern.startswith(REGEX_PREFIX): regex_pattern = pattern[len(REGEX_PREFIX):].strip() try: return bool(re.match(regex_pattern, text, re.IGNORECASE)) except re.error: # If it's an invalid regex, return False return False # Check if it's a wildcard pattern elif any(char in pattern for char in ['*', '?']): return fnmatch.fnmatch(text.lower(), pattern.lower()) # If not regex or wildcard, use fuzzy matching else: return fuzz.partial_ratio( pattern.lower(), text.lower(), score_cutoff=90) > 0 def filter_leaderboard(df, model_name, sort_by): if not model_name: return df.sort_values(by=sort_by, ascending=False) mask = df['model'].apply(lambda x: auto_match(model_name, x)) filtered_df = df[mask].sort_values(by=sort_by, ascending=False) return filtered_df def create_scatter_plot(df, x_axis, y_axis, model_filter, highlight_filter, log_x, log_y): selected_color = 'orange' fig = px.scatter( df, x=x_axis, y=y_axis, log_x=log_x, log_y=log_y, hover_data=['model'], trendline='ols', trendline_options=dict(log_x=True, log_y=True), color='highlighted', color_discrete_map={True: selected_color, False: 'blue'}, title=f'{y_axis} vs {x_axis}' ) # Create legend labels legend_labels = {} if highlight_filter: legend_labels[True] = f'{highlight_filter}' legend_labels[False] = f'{model_filter or "all models"}' else: legend_labels[False] = f'{model_filter or "all models"}' # Update legend for trace in fig.data: if isinstance(trace.marker.color, str): # This is for the scatter traces trace.name = legend_labels.get(trace.marker.color == selected_color, '') fig.update_layout( showlegend=True, legend_title_text='Model Selection' ) return fig # Load the leaderboard data merged_dataframes = load_leaderboard() # Define the available columns for sorting and plotting sort_columns = ['avg_top1', 'avg_top5', 'imagenet_top1', 'imagenet_top5', 'infer_samples_per_sec', 'infer_usec_per_sample', 'param_count', 'infer_gmacs', 'infer_macts', 'infer_tflop_s'] plot_columns = ['infer_samples_per_sec', 'infer_usec_per_sample', 'infer_gmacs', 'infer_macts', 'infer_tflop_s', 'param_count', 'avg_top1', 'avg_top5', 'imagenet_top1', 'imagenet_top5'] DEFAULT_SEARCH = "" DEFAULT_SORT = "avg_top1" DEFAULT_X = "infer_samples_per_sec" DEFAULT_Y = "avg_top1" DEFAULT_BM = 'amp-nchw-pt240-cu124-rtx4090' def col_formatter(value, precision=None): if isinstance(value, int): return f'{value:d}' elif isinstance(value, float): return f'{value:.{precision}f}' if precision is not None else f'{value:g}' return str(value) def update_leaderboard_and_plot( model_name=DEFAULT_SEARCH, highlight_name=None, sort_by=DEFAULT_SORT, x_axis=DEFAULT_X, y_axis=DEFAULT_Y, benchmark_selection=DEFAULT_BM, log_x=True, log_y=True, ): df = merged_dataframes[benchmark_selection].copy() filtered_df = filter_leaderboard(df, model_name, sort_by) # Apply the highlight filter to the entire dataset so the output will be union (comparison) if the filters are disjoint highlight_df = filter_leaderboard(df, highlight_name, sort_by) if highlight_name else None # Combine filtered_df and highlight_df, removing duplicates if highlight_df is not None: combined_df = pd.concat([filtered_df, highlight_df]).drop_duplicates().reset_index(drop=True) combined_df = combined_df.sort_values(by=sort_by, ascending=False) combined_df['highlighted'] = combined_df['model'].isin(highlight_df['model']) else: combined_df = filtered_df combined_df['highlighted'] = False fig = create_scatter_plot(combined_df, x_axis, y_axis, model_name, highlight_name, log_x, log_y) display_df = combined_df.drop(columns=['highlighted']) display_df = display_df.style.apply(lambda x: ['background-color: #FFA500' if combined_df.loc[x.name, 'highlighted'] else '' for _ in x], axis=1).format( #{ # 'infer_batch_size': lambda x: col_formatter(x), # Integer column #}, precision=2, ) return display_df, fig with gr.Blocks(title="The timm Leaderboard") as app: gr.HTML("

The timm (PyTorch Image Models) Leaderboard

") gr.HTML("

This leaderboard is based on the results of the models from timm.

") gr.HTML("

Search tips:
- Use wildcards (* or ?) for pattern matching
- Use 're:' prefix for regex search
- Otherwise, fuzzy matching will be used

") with gr.Row(): search_bar = gr.Textbox(lines=1, label="Model Filter", placeholder="e.g. resnet*, re:^vit, efficientnet", scale=3) sort_dropdown = gr.Dropdown(choices=sort_columns, label="Sort by", value=DEFAULT_SORT, scale=1) with gr.Row(): highlight_bar = gr.Textbox(lines=1, label="Model Highlight/Compare Filter", placeholder="e.g. convnext*, re:^efficient") with gr.Row(): x_axis = gr.Dropdown(choices=plot_columns, label="X-axis", value=DEFAULT_X) y_axis = gr.Dropdown(choices=plot_columns, label="Y-axis", value=DEFAULT_Y) with gr.Row(): benchmark_dropdown = gr.Dropdown( choices=list(merged_dataframes.keys()), label="Benchmark Selection", value=DEFAULT_BM, ) with gr.Row(): log_x = gr.Checkbox(label="Log scale X-axis", value=True) log_y = gr.Checkbox(label="Log scale Y-axis", value=True) update_btn = gr.Button(value="Update", variant="primary") leaderboard = gr.Dataframe() plot = gr.Plot() inputs = [search_bar, highlight_bar, sort_dropdown, x_axis, y_axis, benchmark_dropdown, log_x, log_y] outputs = [leaderboard, plot] app.load(update_leaderboard_and_plot, outputs=outputs) search_bar.submit(update_leaderboard_and_plot, inputs=inputs, outputs=outputs) highlight_bar.submit(update_leaderboard_and_plot, inputs=inputs, outputs=outputs) sort_dropdown.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs) x_axis.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs) y_axis.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs) benchmark_dropdown.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs) log_x.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs) log_y.change(update_leaderboard_and_plot, inputs=inputs, outputs=outputs) update_btn.click(update_leaderboard_and_plot, inputs=inputs, outputs=outputs) app.launch()