Spaces:
Build error
Build error
""" | |
This script turn list of string into embeddings. | |
""" | |
from transformers import AutoTokenizer, TFAutoModel | |
import tensorflow as tf | |
class Embed(object): | |
def __init__(self): | |
self.tokenizer = AutoTokenizer.from_pretrained("sentence-transformers/paraphrase-multilingual-mpnet-base-v2") | |
self.model = TFAutoModel.from_pretrained("sentence-transformers/paraphrase-multilingual-mpnet-base-v2") | |
# Mean Pooling - Take attention mask into account for correct averaging | |
def mean_pooling(model_output, attention_mask): | |
token_embeddings = model_output.last_hidden_state | |
input_mask_expanded = tf.cast(tf.tile(tf.expand_dims(attention_mask, -1), [1, 1, token_embeddings.shape[-1]]), | |
tf.float32) | |
return tf.math.reduce_sum(token_embeddings * input_mask_expanded, 1) / tf.math.maximum( | |
tf.math.reduce_sum(input_mask_expanded, 1), 1e-9) | |
# Encode text | |
def encode(self, texts): | |
# Tokenize sentences | |
encoded_input = self.tokenizer(texts, padding=True, truncation=True, return_tensors='tf') | |
# Compute token embeddings | |
model_output = self.model(**encoded_input, return_dict=True) | |
# Perform pooling | |
embeddings = Embed.mean_pooling(model_output, encoded_input['attention_mask']) | |
# Normalize embeddings | |
embeddings = tf.math.l2_normalize(embeddings, axis=1) | |
return embeddings | |