Spaces:
Build error
Build error
hellopahe
commited on
Commit
•
19d5657
1
Parent(s):
657b2a2
fix
Browse files- app.py +24 -7
- lex_rank_L12.py +44 -0
- lex_rank_new_model.py → lex_rank_distiluse_v1.py +1 -1
app.py
CHANGED
@@ -1,17 +1,19 @@
|
|
1 |
import math, torch, gradio as gr
|
2 |
|
3 |
from lex_rank import LexRank
|
4 |
-
from
|
|
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
|
7 |
|
8 |
# ---===--- instances ---===---
|
9 |
embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
10 |
lex = LexRank()
|
11 |
-
|
|
|
12 |
|
13 |
|
14 |
-
# 摘要方法
|
15 |
def extract_handler(content):
|
16 |
summary_length = math.ceil(len(content) / 10)
|
17 |
sentences = lex.find_central(content, num=summary_length)
|
@@ -21,10 +23,20 @@ def extract_handler(content):
|
|
21 |
return output
|
22 |
|
23 |
|
24 |
-
# 摘要方法
|
25 |
-
def
|
26 |
summary_length = math.ceil(len(content) / 10)
|
27 |
-
sentences =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
28 |
output = ""
|
29 |
for index, sentence in enumerate(sentences):
|
30 |
output += f"{index}: {sentence}\n"
|
@@ -63,6 +75,10 @@ with gr.Blocks() as app:
|
|
63 |
text_input_2 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
64 |
text_button_2 = gr.Button("生成摘要")
|
65 |
text_output_2 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10)
|
|
|
|
|
|
|
|
|
66 |
with gr.Tab("相似度检测"):
|
67 |
with gr.Row():
|
68 |
text_input_query = gr.Textbox(lines=10, label="查询文本")
|
@@ -71,7 +87,8 @@ with gr.Blocks() as app:
|
|
71 |
text_output_similarity = gr.Textbox()
|
72 |
|
73 |
text_button_1.click(extract_handler, inputs=text_input_1, outputs=text_output_1)
|
74 |
-
text_button_2.click(
|
|
|
75 |
text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity)
|
76 |
|
77 |
app.launch(
|
|
|
1 |
import math, torch, gradio as gr
|
2 |
|
3 |
from lex_rank import LexRank
|
4 |
+
from lex_rank_distiluse_v1 import LexRankDistiluseV1
|
5 |
+
from lex_rank_L12 import LexRankL12
|
6 |
from sentence_transformers import SentenceTransformer, util
|
7 |
|
8 |
|
9 |
# ---===--- instances ---===---
|
10 |
embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
11 |
lex = LexRank()
|
12 |
+
lex_distiluse_v1 = LexRankDistiluseV1()
|
13 |
+
lex_l12 = LexRankL12()
|
14 |
|
15 |
|
16 |
+
# 摘要方法1
|
17 |
def extract_handler(content):
|
18 |
summary_length = math.ceil(len(content) / 10)
|
19 |
sentences = lex.find_central(content, num=summary_length)
|
|
|
23 |
return output
|
24 |
|
25 |
|
26 |
+
# 摘要方法2
|
27 |
+
def extract_handler_distiluse_v1(content):
|
28 |
summary_length = math.ceil(len(content) / 10)
|
29 |
+
sentences = lex_distiluse_v1.find_central(content, num=summary_length)
|
30 |
+
output = ""
|
31 |
+
for index, sentence in enumerate(sentences):
|
32 |
+
output += f"{index}: {sentence}\n"
|
33 |
+
return output
|
34 |
+
|
35 |
+
|
36 |
+
# 摘要方法3
|
37 |
+
def extract_handler_l12(content):
|
38 |
+
summary_length = math.ceil(len(content) / 10)
|
39 |
+
sentences = lex_l12.find_central(content, num=summary_length)
|
40 |
output = ""
|
41 |
for index, sentence in enumerate(sentences):
|
42 |
output += f"{index}: {sentence}\n"
|
|
|
75 |
text_input_2 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
76 |
text_button_2 = gr.Button("生成摘要")
|
77 |
text_output_2 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10)
|
78 |
+
with gr.Tab("LexRank-MiniLM-L12-v2"):
|
79 |
+
text_input_3 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
80 |
+
text_button_3 = gr.Button("生成摘要")
|
81 |
+
text_output_3 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10)
|
82 |
with gr.Tab("相似度检测"):
|
83 |
with gr.Row():
|
84 |
text_input_query = gr.Textbox(lines=10, label="查询文本")
|
|
|
87 |
text_output_similarity = gr.Textbox()
|
88 |
|
89 |
text_button_1.click(extract_handler, inputs=text_input_1, outputs=text_output_1)
|
90 |
+
text_button_2.click(extract_handler_distiluse_v1, inputs=text_input_2, outputs=text_output_2)
|
91 |
+
text_button_3.click(extract_handler_l12, inputs=text_input_3, outputs=text_output_3)
|
92 |
text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity)
|
93 |
|
94 |
app.launch(
|
lex_rank_L12.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy, nltk
|
2 |
+
nltk.download('punkt')
|
3 |
+
|
4 |
+
|
5 |
+
from harvesttext import HarvestText
|
6 |
+
from lex_rank_util import degree_centrality_scores
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
+
|
9 |
+
|
10 |
+
class LexRankL12(object):
|
11 |
+
def __init__(self):
|
12 |
+
self.model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2')
|
13 |
+
self.ht = HarvestText()
|
14 |
+
|
15 |
+
def find_central(self, content: str, num=100):
|
16 |
+
if self.contains_chinese(content):
|
17 |
+
sentences = self.ht.cut_sentences(content)
|
18 |
+
else:
|
19 |
+
sentences = nltk.sent_tokenize(content)
|
20 |
+
embeddings = self.model.encode(sentences, convert_to_tensor=True).cpu()
|
21 |
+
|
22 |
+
# Compute the pair-wise cosine similarities
|
23 |
+
cos_scores = util.cos_sim(embeddings, embeddings).numpy()
|
24 |
+
|
25 |
+
# Compute the centrality for each sentence
|
26 |
+
centrality_scores = degree_centrality_scores(cos_scores, threshold=None)
|
27 |
+
|
28 |
+
# We argsort so that the first element is the sentence with the highest score
|
29 |
+
most_central_sentence_indices = numpy.argsort(-centrality_scores)
|
30 |
+
|
31 |
+
# num = 100
|
32 |
+
res = []
|
33 |
+
for index in most_central_sentence_indices:
|
34 |
+
if num < 0:
|
35 |
+
break
|
36 |
+
res.append(sentences[index])
|
37 |
+
num -= len(sentences[index])
|
38 |
+
return res
|
39 |
+
|
40 |
+
def contains_chinese(self, content: str):
|
41 |
+
for _char in content:
|
42 |
+
if '\u4e00' <= _char <= '\u9fa5':
|
43 |
+
return True
|
44 |
+
return False
|
lex_rank_new_model.py → lex_rank_distiluse_v1.py
RENAMED
@@ -7,7 +7,7 @@ from lex_rank_util import degree_centrality_scores
|
|
7 |
from sentence_transformers import SentenceTransformer, util
|
8 |
|
9 |
|
10 |
-
class
|
11 |
def __init__(self):
|
12 |
self.model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
13 |
self.ht = HarvestText()
|
|
|
7 |
from sentence_transformers import SentenceTransformer, util
|
8 |
|
9 |
|
10 |
+
class LexRankDistiluseV1(object):
|
11 |
def __init__(self):
|
12 |
self.model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
13 |
self.ht = HarvestText()
|