Spaces:
Build error
Build error
hellopahe
commited on
Commit
•
3611e07
1
Parent(s):
e9377d8
fix
Browse files- app.py +18 -1
- lex_rank_new_model.py +44 -0
app.py
CHANGED
@@ -1,12 +1,14 @@
|
|
1 |
import math, torch, gradio as gr
|
2 |
|
3 |
from lex_rank import LexRank
|
|
|
4 |
from sentence_transformers import SentenceTransformer, util
|
5 |
|
6 |
|
7 |
# ---===--- instances ---===---
|
8 |
embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
9 |
lex = LexRank()
|
|
|
10 |
|
11 |
|
12 |
# 摘要方法
|
@@ -19,6 +21,16 @@ def extract_handler(content):
|
|
19 |
return output
|
20 |
|
21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
22 |
# 相似度检测方法
|
23 |
def similarity_search(queries, doc):
|
24 |
doc_list = doc.split('\n')
|
@@ -43,10 +55,14 @@ def similarity_search(queries, doc):
|
|
43 |
# web ui
|
44 |
with gr.Blocks() as app:
|
45 |
gr.Markdown("从下面的标签选择测试模块 [摘要生成,相似度检测]")
|
46 |
-
with gr.Tab("LexRank"):
|
47 |
text_input_1 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
48 |
text_button_1 = gr.Button("生成摘要")
|
49 |
text_output_1 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10)
|
|
|
|
|
|
|
|
|
50 |
with gr.Tab("相似度检测"):
|
51 |
with gr.Row():
|
52 |
text_input_query = gr.Textbox(lines=10, label="查询文本")
|
@@ -55,6 +71,7 @@ with gr.Blocks() as app:
|
|
55 |
text_output_similarity = gr.Textbox()
|
56 |
|
57 |
text_button_1.click(extract_handler, inputs=text_input_1, outputs=text_output_1)
|
|
|
58 |
text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity)
|
59 |
|
60 |
app.launch(
|
|
|
1 |
import math, torch, gradio as gr
|
2 |
|
3 |
from lex_rank import LexRank
|
4 |
+
from lex_rank_new_model import LexRankNewModel
|
5 |
from sentence_transformers import SentenceTransformer, util
|
6 |
|
7 |
|
8 |
# ---===--- instances ---===---
|
9 |
embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2')
|
10 |
lex = LexRank()
|
11 |
+
lex_new_model = LexRankNewModel()
|
12 |
|
13 |
|
14 |
# 摘要方法
|
|
|
21 |
return output
|
22 |
|
23 |
|
24 |
+
# 摘要方法
|
25 |
+
def extract_handler_new_model(content):
|
26 |
+
summary_length = math.ceil(len(content) / 10)
|
27 |
+
sentences = lex_new_model.find_central(content, num=summary_length)
|
28 |
+
output = ""
|
29 |
+
for index, sentence in enumerate(sentences):
|
30 |
+
output += f"{index}: {sentence}\n"
|
31 |
+
return output
|
32 |
+
|
33 |
+
|
34 |
# 相似度检测方法
|
35 |
def similarity_search(queries, doc):
|
36 |
doc_list = doc.split('\n')
|
|
|
55 |
# web ui
|
56 |
with gr.Blocks() as app:
|
57 |
gr.Markdown("从下面的标签选择测试模块 [摘要生成,相似度检测]")
|
58 |
+
with gr.Tab("LexRank-mpnet"):
|
59 |
text_input_1 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
60 |
text_button_1 = gr.Button("生成摘要")
|
61 |
text_output_1 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10)
|
62 |
+
with gr.Tab("LexRank-distiluse"):
|
63 |
+
text_input_2 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000)
|
64 |
+
text_button_2 = gr.Button("生成摘要")
|
65 |
+
text_output_2 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10)
|
66 |
with gr.Tab("相似度检测"):
|
67 |
with gr.Row():
|
68 |
text_input_query = gr.Textbox(lines=10, label="查询文本")
|
|
|
71 |
text_output_similarity = gr.Textbox()
|
72 |
|
73 |
text_button_1.click(extract_handler, inputs=text_input_1, outputs=text_output_1)
|
74 |
+
text_button_2.click(extract_handler_new_model, inputs=text_input_2, outputs=text_output_2)
|
75 |
text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity)
|
76 |
|
77 |
app.launch(
|
lex_rank_new_model.py
ADDED
@@ -0,0 +1,44 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import numpy, nltk
|
2 |
+
nltk.download('punkt')
|
3 |
+
|
4 |
+
|
5 |
+
from harvesttext import HarvestText
|
6 |
+
from lex_rank_util import degree_centrality_scores
|
7 |
+
from sentence_transformers import SentenceTransformer, util
|
8 |
+
|
9 |
+
|
10 |
+
class LexRankNewModel(object):
|
11 |
+
def __init__(self):
|
12 |
+
self.model = SentenceTransformer('distiluse-base-multilingual-cased-v1')
|
13 |
+
self.ht = HarvestText()
|
14 |
+
|
15 |
+
def find_central(self, content: str, num=100):
|
16 |
+
if self.contains_chinese(content):
|
17 |
+
sentences = self.ht.cut_sentences(content)
|
18 |
+
else:
|
19 |
+
sentences = nltk.sent_tokenize(content)
|
20 |
+
embeddings = self.model.encode(sentences, convert_to_tensor=True).cpu()
|
21 |
+
|
22 |
+
# Compute the pair-wise cosine similarities
|
23 |
+
cos_scores = util.cos_sim(embeddings, embeddings).numpy()
|
24 |
+
|
25 |
+
# Compute the centrality for each sentence
|
26 |
+
centrality_scores = degree_centrality_scores(cos_scores, threshold=None)
|
27 |
+
|
28 |
+
# We argsort so that the first element is the sentence with the highest score
|
29 |
+
most_central_sentence_indices = numpy.argsort(-centrality_scores)
|
30 |
+
|
31 |
+
# num = 100
|
32 |
+
res = []
|
33 |
+
for index in most_central_sentence_indices:
|
34 |
+
if num < 0:
|
35 |
+
break
|
36 |
+
res.append(sentences[index])
|
37 |
+
num -= len(sentences[index])
|
38 |
+
return res
|
39 |
+
|
40 |
+
def contains_chinese(self, content: str):
|
41 |
+
for _char in content:
|
42 |
+
if '\u4e00' <= _char <= '\u9fa5':
|
43 |
+
return True
|
44 |
+
return False
|