import math, torch, gradio as gr from lex_rank import LexRank from lex_rank_new_model import LexRankNewModel from sentence_transformers import SentenceTransformer, util # ---===--- instances ---===--- embedder = SentenceTransformer('paraphrase-multilingual-mpnet-base-v2') lex = LexRank() lex_new_model = LexRankNewModel() # 摘要方法 def extract_handler(content): summary_length = math.ceil(len(content) / 10) sentences = lex.find_central(content, num=summary_length) output = "" for index, sentence in enumerate(sentences): output += f"{index}: {sentence}\n" return output # 摘要方法 def extract_handler_new_model(content): summary_length = math.ceil(len(content) / 10) sentences = lex_new_model.find_central(content, num=summary_length) output = "" for index, sentence in enumerate(sentences): output += f"{index}: {sentence}\n" return output # 相似度检测方法 def similarity_search(queries, doc): doc_list = doc.split('\n') query_list = queries.split('\n') corpus_embeddings = embedder.encode(doc_list, convert_to_tensor=True) top_k = min(5, len(doc_list)) output = "" for query in query_list: query_embedding = embedder.encode(query, convert_to_tensor=True) # We use cosine-similarity and torch.topk to find the highest 5 scores cos_scores = util.cos_sim(query_embedding, corpus_embeddings)[0] top_results = torch.topk(cos_scores, k=top_k) output += "\n\n======================\n\n" output += f"Query: {query}" output += "\nTop 5 most similar sentences in corpus:\n" for score, idx in zip(top_results[0], top_results[1]): output += f"{doc_list[idx]}(Score: {score})\n" return output # web ui with gr.Blocks() as app: gr.Markdown("从下面的标签选择测试模块 [摘要生成,相似度检测]") with gr.Tab("LexRank-mpnet"): text_input_1 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000) text_button_1 = gr.Button("生成摘要") text_output_1 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10) with gr.Tab("LexRank-distiluse"): text_input_2 = gr.Textbox(label="请输入长文本:", lines=10, max_lines=1000) text_button_2 = gr.Button("生成摘要") text_output_2 = gr.Textbox(label="摘要文本(长度设置为原文长度的1/10)", lines=10) with gr.Tab("相似度检测"): with gr.Row(): text_input_query = gr.Textbox(lines=10, label="查询文本") text_input_doc = gr.Textbox(lines=20, label="逐行输入待比较的文本列表") text_button_similarity = gr.Button("对比相似度") text_output_similarity = gr.Textbox() text_button_1.click(extract_handler, inputs=text_input_1, outputs=text_output_1) text_button_2.click(extract_handler_new_model, inputs=text_input_2, outputs=text_output_2) text_button_similarity.click(similarity_search, inputs=[text_input_query, text_input_doc], outputs=text_output_similarity) app.launch( # enable share will generate a temporary public link. # share=True, # debug=True, # auth=("qee", "world"), # auth_message="请登陆" )