import numpy, nltk nltk.download('punkt') from harvesttext import HarvestText from lex_rank_util import degree_centrality_scores from sentence_transformers import SentenceTransformer, util class LexRankL12(object): def __init__(self): self.model = SentenceTransformer('paraphrase-multilingual-MiniLM-L12-v2') self.ht = HarvestText() def find_central(self, content: str, num=10): if self.contains_chinese(content): sentences = self.ht.cut_sentences(content) else: sentences = nltk.sent_tokenize(content) embeddings = self.model.encode(sentences, convert_to_tensor=True).cpu() # Compute the pair-wise cosine similarities cos_scores = util.cos_sim(embeddings, embeddings).numpy() # Compute the centrality for each sentence centrality_scores = degree_centrality_scores(cos_scores, threshold=None) # We argsort so that the first element is the sentence with the highest score most_central_sentence_indices = numpy.argsort(-centrality_scores) # num = 100 res = [] for index in most_central_sentence_indices: if num < 0: break res.append(sentences[index]) num -= 1 return res def contains_chinese(self, content: str): for _char in content: if '\u4e00' <= _char <= '\u9fa5': return True return False