import gradio as gr #from florence import model_init, draw_image #from wikai import analyze_dial, ocr_and_od import matplotlib.pyplot as plt from aimodel import model_init, read_meter, visualization from test_rect import read_meter as read_meter_rect from PIL import Image import logging #logging.basicConfig(level=logging.DEBUG) print("Loading model...") fl, fl_ft = model_init(hack=False) def process_image(input_image:Image, meter_type:str): if meter_type == "方形儀表": value, img = read_meter_rect(input_image, fl, fl_ft) return img, f"辨識結果: PA={value}", None assert meter_type == "圓形儀表" plt.clf() print("process_image") W, H = 640, 480 if input_image is None: return None, None meter_result = read_meter(input_image, fl, fl_ft) img, fig = visualization(meter_result) return img, f"辨識結果: PSI={meter_result.needle_psi:.1f} kg/cm²={meter_result.needle_kg_cm2:.2f} ", plt with gr.Blocks() as demo: gr.Markdown("## 指針辨識系統\n請選擇儀表類型,上傳圖片,或點擊Submit") with gr.Row(): with gr.Column(): with gr.Row(): clear_button = gr.ClearButton() submit_button = gr.Button("Submit", variant="primary") meter_type_dropdown = gr.Dropdown(choices=["圓形儀表", "方形儀表"], label="選擇選項") image_input = gr.Image(type="pil", label="上傳圖片") with gr.Column(): number_output = gr.Textbox(label="辨識結果", placeholder="辨識結果") image_output = gr.Image(label="輸出圖片") plot_output = gr.Plot(label="模型結果") clear_button.add([image_input, image_output, number_output]) image_input.upload( fn=process_image, inputs=[image_input, meter_type_dropdown], outputs=[image_output, number_output, plot_output], queue=False ) submit_button.click( fn=process_image, inputs=[image_input, meter_type_dropdown], outputs=[image_output, number_output, plot_output], ) demo.launch(debug=True)