Spaces:
Sleeping
Sleeping
File size: 2,629 Bytes
e204153 017140f e204153 cce21f1 70a76e4 cce21f1 f52f4a7 cce21f1 f52f4a7 0852a55 e4f5e06 f52f4a7 70a76e4 cce21f1 c3bbd31 70a76e4 0852a55 70a76e4 017140f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 |
---
app_file: demo.py
license: mit
title: AI Text Steganography
sdk: gradio
colorFrom: red
colorTo: yellow
pinned: true
---
# AI Text Steganography
## Description
- This is the baseline implementation of AI Text Steganography for our final project in Software Designing and Applied Information Security courses in HCMUS-VNU.
- Our project focuses on hiding data inside a text sequence generated by LLMs (e.g. GPT-2).
- We took inspiration from [Kirchenbauer et al.](https://arxiv.org/abs/2301.10226).
## Members
- Tran Nam Khanh
- Phan Le Dac Phu
## Installation
1. Clone this repository:
```Bash
git clone https://github.com/trnKhanh/ai-text-steganography.git
cd ai-text-steganography
```
2. (Optional) Create new conda environment:
```Bash
conda create -n ai-text-steganography python=3.10
conda activate ai-text-steganography
```
3. Install requirements:
```Bash
pip install -r requirements.txt
```
## Usage
- Gradio demo:
```Bash
python demo.py
```
- RestAPI:
```Bash
python api.py
```
- See help message of the Command Line Interface by:
```Bash
python main.py -h
```
- To run analysis, see the help message by:
```Bash
python analysis.py -h
```
## Documentation
- To access the documentation for the RestAPI, launch the RestAPI and go to <http://localhost:6969/docs>
## Configuration
- `config.ini` is the config file of the project. We use the modified syntax of the `configparser` package. Every key-value pair follows the syntax: `key = type:value`. Currently, `type` can only be `int`, `float` or `str`.
- Details on config:
- `server`: parameters for the RestAPI:
- `models.names`: names of LLMs allowed. Note that this follows the name defined on [Hugging Face](https://huggingface.co/models).
- `models.params`: parameters used to load LLMs.
- `encrypt.default`: default parameters for encryption algorithm.
- `decrypt.default`: default parameters for decryption algorithm.
## Notes on implementation
- Because of the limited resources, we load multiple models on the same machine (implementation is in `model_factory.py`):
- Each model is first loaded to the `load_device` (e.g. cpu).
- If there is a request to use a specific model, it is loaded to the `run_device` (e.g. gpu) for inference.
- Therefore, only one model can be used for inference at a time. As a result, we could optimize the limited resources we have to allow users to choose different LLMs, but it forces the API to be synchronous instead.
## TODO lists
- [x] Baseline code.
- [x] CLI.
- [x] Hashing schemes.
- [x] Rest API.
- [x] Basic Demo.
- [x] Statistical experiments.
- [ ] Attack strategies
- [ ] White-box
- [ ] Black-box |