Spaces:
Running
Running
Integrate global config
Browse files- api.py +88 -45
- demo.py +60 -39
- main.py +10 -8
- processors.py +17 -2
- requirements.txt +1 -0
- schemes.py +33 -0
- stegno.py +1 -0
- utils.py +5 -0
api.py
CHANGED
@@ -1,66 +1,109 @@
|
|
|
|
|
|
1 |
import torch
|
2 |
from fastapi import FastAPI
|
|
|
3 |
|
4 |
from stegno import generate, decrypt
|
5 |
from utils import load_model
|
|
|
|
|
|
|
|
|
6 |
|
7 |
app = FastAPI()
|
8 |
|
9 |
|
10 |
-
@app.
|
11 |
-
async def
|
12 |
-
|
13 |
-
msg: str,
|
14 |
-
gen_model: str = "openai-community/gpt2",
|
15 |
-
device: str = "cpu",
|
16 |
-
start_pos: int = 0,
|
17 |
-
gamma: float = 2.0,
|
18 |
-
msg_base: int = 2,
|
19 |
-
seed_scheme: str = "dummy_hash",
|
20 |
-
window_length: int = 1,
|
21 |
-
private_key: int = 0,
|
22 |
-
max_new_tokens_ratio: float = 2,
|
23 |
-
num_beams: int = 4,
|
24 |
):
|
25 |
-
model, tokenizer = load_model(gen_model
|
26 |
text, msg_rate = generate(
|
27 |
tokenizer=tokenizer,
|
28 |
model=model,
|
29 |
-
prompt=prompt,
|
30 |
-
msg=str.encode(msg),
|
31 |
-
start_pos_p=[start_pos],
|
32 |
-
gamma=gamma,
|
33 |
-
msg_base=msg_base,
|
34 |
-
seed_scheme=seed_scheme,
|
35 |
-
window_length=window_length,
|
36 |
-
private_key=private_key,
|
37 |
-
max_new_tokens_ratio=max_new_tokens_ratio,
|
38 |
-
num_beams=num_beams,
|
39 |
)
|
40 |
return {"text": text, "msg_rate": msg_rate}
|
41 |
|
42 |
|
43 |
-
@app.
|
44 |
-
async def
|
45 |
-
|
46 |
-
gen_model: str = "openai-community/gpt2",
|
47 |
-
device: str = "cpu",
|
48 |
-
msg_base: int = 2,
|
49 |
-
seed_scheme: str = "dummy_hash",
|
50 |
-
window_length: int = 1,
|
51 |
-
private_key: int = 0,
|
52 |
-
):
|
53 |
-
model, tokenizer = load_model(gen_model, torch.device(device))
|
54 |
msgs = decrypt(
|
55 |
tokenizer=tokenizer,
|
56 |
device=model.device,
|
57 |
-
text=text,
|
58 |
-
msg_base=msg_base,
|
59 |
-
seed_scheme=seed_scheme,
|
60 |
-
window_length=window_length,
|
61 |
-
private_key=private_key,
|
62 |
)
|
63 |
-
|
64 |
-
for i,
|
65 |
-
|
66 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import base64
|
2 |
+
|
3 |
import torch
|
4 |
from fastapi import FastAPI
|
5 |
+
import uvicorn
|
6 |
|
7 |
from stegno import generate, decrypt
|
8 |
from utils import load_model
|
9 |
+
from seed_scheme_factory import SeedSchemeFactory
|
10 |
+
from model_factory import ModelFactory
|
11 |
+
from global_config import GlobalConfig
|
12 |
+
from schemes import DecryptionBody, EncryptionBody
|
13 |
|
14 |
app = FastAPI()
|
15 |
|
16 |
|
17 |
+
@app.post("/encrypt")
|
18 |
+
async def encrypt_api(
|
19 |
+
body: EncryptionBody,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
20 |
):
|
21 |
+
model, tokenizer = ModelFactory.load_model(body.gen_model)
|
22 |
text, msg_rate = generate(
|
23 |
tokenizer=tokenizer,
|
24 |
model=model,
|
25 |
+
prompt=body.prompt,
|
26 |
+
msg=str.encode(body.msg),
|
27 |
+
start_pos_p=[body.start_pos],
|
28 |
+
gamma=body.gamma,
|
29 |
+
msg_base=body.msg_base,
|
30 |
+
seed_scheme=body.seed_scheme,
|
31 |
+
window_length=body.window_length,
|
32 |
+
private_key=body.private_key,
|
33 |
+
max_new_tokens_ratio=body.max_new_tokens_ratio,
|
34 |
+
num_beams=body.num_beams,
|
35 |
)
|
36 |
return {"text": text, "msg_rate": msg_rate}
|
37 |
|
38 |
|
39 |
+
@app.post("/decrypt")
|
40 |
+
async def decrypt_api(body: DecryptionBody):
|
41 |
+
model, tokenizer = ModelFactory.load_model(body.gen_model)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
42 |
msgs = decrypt(
|
43 |
tokenizer=tokenizer,
|
44 |
device=model.device,
|
45 |
+
text=body.text,
|
46 |
+
msg_base=body.msg_base,
|
47 |
+
seed_scheme=body.seed_scheme,
|
48 |
+
window_length=body.window_length,
|
49 |
+
private_key=body.private_key,
|
50 |
)
|
51 |
+
msg_b64 = {}
|
52 |
+
for i, s_msg in enumerate(msgs):
|
53 |
+
msg_b64[i] = []
|
54 |
+
for msg in s_msg:
|
55 |
+
msg_b64[i].append(base64.b64encode(msg))
|
56 |
+
return msg_b64
|
57 |
+
|
58 |
+
|
59 |
+
@app.get("/configs")
|
60 |
+
async def default_config():
|
61 |
+
configs = {
|
62 |
+
"default": {
|
63 |
+
"encrypt": {
|
64 |
+
"gen_model": GlobalConfig.get("encrypt.default", "gen_model"),
|
65 |
+
"start_pos": GlobalConfig.get("encrypt.default", "start_pos"),
|
66 |
+
"gamma": GlobalConfig.get("encrypt.default", "gamma"),
|
67 |
+
"msg_base": GlobalConfig.get("encrypt.default", "msg_base"),
|
68 |
+
"seed_scheme": GlobalConfig.get(
|
69 |
+
"encrypt.default", "seed_scheme"
|
70 |
+
),
|
71 |
+
"window_length": GlobalConfig.get(
|
72 |
+
"encrypt.default", "window_length"
|
73 |
+
),
|
74 |
+
"private_key": GlobalConfig.get(
|
75 |
+
"encrypt.default", "private_key"
|
76 |
+
),
|
77 |
+
"max_new_tokens_ratio": GlobalConfig.get(
|
78 |
+
"encrypt.default", "max_new_tokens_ratio"
|
79 |
+
),
|
80 |
+
"num_beams": GlobalConfig.get("encrypt.default", "num_beams"),
|
81 |
+
},
|
82 |
+
"decrypt": {
|
83 |
+
"gen_model": GlobalConfig.get("encrypt.default", "gen_model"),
|
84 |
+
"msg_base": GlobalConfig.get("encrypt.default", "msg_base"),
|
85 |
+
"seed_scheme": GlobalConfig.get(
|
86 |
+
"encrypt.default", "seed_scheme"
|
87 |
+
),
|
88 |
+
"window_length": GlobalConfig.get(
|
89 |
+
"encrypt.default", "window_length"
|
90 |
+
),
|
91 |
+
"private_key": GlobalConfig.get(
|
92 |
+
"encrypt.default", "private_key"
|
93 |
+
),
|
94 |
+
},
|
95 |
+
},
|
96 |
+
"seed_schemes": SeedSchemeFactory.get_schemes_name(),
|
97 |
+
"models": ModelFactory.get_models_names(),
|
98 |
+
}
|
99 |
+
|
100 |
+
return configs
|
101 |
+
|
102 |
+
|
103 |
+
if __name__ == "__main__":
|
104 |
+
port = GlobalConfig.get("server", "port")
|
105 |
+
if port is None:
|
106 |
+
port = 8000
|
107 |
+
else:
|
108 |
+
port = int(port)
|
109 |
+
uvicorn.run(app, host="0.0.0.0", port=port)
|
demo.py
CHANGED
@@ -1,26 +1,26 @@
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
|
4 |
-
from
|
5 |
from stegno import generate, decrypt
|
6 |
from seed_scheme_factory import SeedSchemeFactory
|
|
|
7 |
|
8 |
|
9 |
def enc_fn(
|
10 |
-
gen_model: str
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
num_beams: int = 4,
|
22 |
):
|
23 |
-
model, tokenizer = load_model(gen_model
|
24 |
text, msg_rate = generate(
|
25 |
tokenizer=tokenizer,
|
26 |
model=model,
|
@@ -39,15 +39,14 @@ def enc_fn(
|
|
39 |
|
40 |
|
41 |
def dec_fn(
|
42 |
-
gen_model: str
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
private_key: int = 0,
|
49 |
):
|
50 |
-
model, tokenizer = load_model(gen_model
|
51 |
msgs = decrypt(
|
52 |
tokenizer=tokenizer,
|
53 |
device=model.device,
|
@@ -67,34 +66,56 @@ if __name__ == "__main__":
|
|
67 |
enc = gr.Interface(
|
68 |
fn=enc_fn,
|
69 |
inputs=[
|
70 |
-
gr.
|
71 |
-
|
|
|
|
|
72 |
gr.Textbox(),
|
73 |
gr.Textbox(),
|
74 |
-
gr.Number(),
|
75 |
-
gr.Number(
|
76 |
-
gr.Number(
|
77 |
-
gr.Dropdown(
|
78 |
-
|
79 |
-
|
80 |
-
|
81 |
-
gr.Number(
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
82 |
],
|
83 |
outputs=[
|
84 |
-
gr.Textbox(
|
|
|
|
|
|
|
|
|
85 |
gr.Number(label="Percentage of message in text", show_label=True),
|
86 |
],
|
87 |
)
|
88 |
dec = gr.Interface(
|
89 |
fn=dec_fn,
|
90 |
inputs=[
|
91 |
-
gr.
|
92 |
-
|
|
|
|
|
93 |
gr.Textbox(),
|
94 |
-
gr.Number(
|
95 |
-
gr.Dropdown(
|
96 |
-
|
97 |
-
|
|
|
|
|
|
|
|
|
|
|
98 |
],
|
99 |
outputs=[
|
100 |
gr.Textbox(label="Message", show_label=True),
|
|
|
1 |
import torch
|
2 |
import gradio as gr
|
3 |
|
4 |
+
from model_factory import ModelFactory
|
5 |
from stegno import generate, decrypt
|
6 |
from seed_scheme_factory import SeedSchemeFactory
|
7 |
+
from global_config import GlobalConfig
|
8 |
|
9 |
|
10 |
def enc_fn(
|
11 |
+
gen_model: str,
|
12 |
+
prompt: str,
|
13 |
+
msg: str,
|
14 |
+
start_pos: int,
|
15 |
+
gamma: float,
|
16 |
+
msg_base: int,
|
17 |
+
seed_scheme: str,
|
18 |
+
window_length: int,
|
19 |
+
private_key: int,
|
20 |
+
max_new_tokens_ratio: float,
|
21 |
+
num_beams: int,
|
|
|
22 |
):
|
23 |
+
model, tokenizer = ModelFactory.load_model(gen_model)
|
24 |
text, msg_rate = generate(
|
25 |
tokenizer=tokenizer,
|
26 |
model=model,
|
|
|
39 |
|
40 |
|
41 |
def dec_fn(
|
42 |
+
gen_model: str,
|
43 |
+
text: str,
|
44 |
+
msg_base: int,
|
45 |
+
seed_scheme: str,
|
46 |
+
window_length: int,
|
47 |
+
private_key: int,
|
|
|
48 |
):
|
49 |
+
model, tokenizer = ModelFactory.load_model(gen_model)
|
50 |
msgs = decrypt(
|
51 |
tokenizer=tokenizer,
|
52 |
device=model.device,
|
|
|
66 |
enc = gr.Interface(
|
67 |
fn=enc_fn,
|
68 |
inputs=[
|
69 |
+
gr.Dropdown(
|
70 |
+
value=GlobalConfig.get("encrypt.default", "gen_model"),
|
71 |
+
choices=ModelFactory.get_models_names(),
|
72 |
+
),
|
73 |
gr.Textbox(),
|
74 |
gr.Textbox(),
|
75 |
+
gr.Number(int(GlobalConfig.get("encrypt.default", "start_pos"))),
|
76 |
+
gr.Number(float(GlobalConfig.get("encrypt.default", "gamma"))),
|
77 |
+
gr.Number(int(GlobalConfig.get("encrypt.default", "msg_base"))),
|
78 |
+
gr.Dropdown(
|
79 |
+
value=GlobalConfig.get("encrypt.default", "seed_scheme"),
|
80 |
+
choices=SeedSchemeFactory.get_schemes_name(),
|
81 |
+
),
|
82 |
+
gr.Number(
|
83 |
+
int(GlobalConfig.get("encrypt.default", "window_length"))
|
84 |
+
),
|
85 |
+
gr.Number(int(GlobalConfig.get("encrypt.default", "private_key"))),
|
86 |
+
gr.Number(
|
87 |
+
float(
|
88 |
+
GlobalConfig.get("encrypt.default", "max_new_tokens_ratio")
|
89 |
+
)
|
90 |
+
),
|
91 |
+
gr.Number(int(GlobalConfig.get("encrypt.default", "num_beams"))),
|
92 |
],
|
93 |
outputs=[
|
94 |
+
gr.Textbox(
|
95 |
+
label="Text containing message",
|
96 |
+
show_label=True,
|
97 |
+
show_copy_button=True,
|
98 |
+
),
|
99 |
gr.Number(label="Percentage of message in text", show_label=True),
|
100 |
],
|
101 |
)
|
102 |
dec = gr.Interface(
|
103 |
fn=dec_fn,
|
104 |
inputs=[
|
105 |
+
gr.Dropdown(
|
106 |
+
value=GlobalConfig.get("decrypt.default", "gen_model"),
|
107 |
+
choices=ModelFactory.get_models_names(),
|
108 |
+
),
|
109 |
gr.Textbox(),
|
110 |
+
gr.Number(int(GlobalConfig.get("decrypt.default", "msg_base"))),
|
111 |
+
gr.Dropdown(
|
112 |
+
value=GlobalConfig.get("decrypt.default", "seed_scheme"),
|
113 |
+
choices=SeedSchemeFactory.get_schemes_name(),
|
114 |
+
),
|
115 |
+
gr.Number(
|
116 |
+
int(GlobalConfig.get("decrypt.default", "window_length"))
|
117 |
+
),
|
118 |
+
gr.Number(int(GlobalConfig.get("decrypt.default", "private_key"))),
|
119 |
],
|
120 |
outputs=[
|
121 |
gr.Textbox(label="Message", show_label=True),
|
main.py
CHANGED
@@ -6,6 +6,8 @@ import torch
|
|
6 |
|
7 |
from stegno import generate, decrypt
|
8 |
from utils import load_model
|
|
|
|
|
9 |
|
10 |
|
11 |
def create_args():
|
@@ -15,7 +17,7 @@ def create_args():
|
|
15 |
parser.add_argument(
|
16 |
"--gen-model",
|
17 |
type=str,
|
18 |
-
default="
|
19 |
help="Generative model (LLM) used to generate text",
|
20 |
)
|
21 |
parser.add_argument(
|
@@ -25,25 +27,25 @@ def create_args():
|
|
25 |
parser.add_argument(
|
26 |
"--gamma",
|
27 |
type=float,
|
28 |
-
default=
|
29 |
help="Bias added to scores of tokens in valid list",
|
30 |
)
|
31 |
parser.add_argument(
|
32 |
"--msg-base",
|
33 |
type=int,
|
34 |
-
default=
|
35 |
help="Base of message",
|
36 |
)
|
37 |
parser.add_argument(
|
38 |
"--seed-scheme",
|
39 |
type=str,
|
40 |
-
|
41 |
help="Scheme used to compute the seed",
|
42 |
)
|
43 |
parser.add_argument(
|
44 |
"--window-length",
|
45 |
type=int,
|
46 |
-
default=
|
47 |
help="Length of window to compute the seed",
|
48 |
)
|
49 |
parser.add_argument(
|
@@ -56,13 +58,13 @@ def create_args():
|
|
56 |
parser.add_argument(
|
57 |
"--num-beams",
|
58 |
type=int,
|
59 |
-
default=
|
60 |
help="Number of beams used in beam search",
|
61 |
)
|
62 |
parser.add_argument(
|
63 |
"--max-new-tokens-ratio",
|
64 |
type=float,
|
65 |
-
default=
|
66 |
help="Ratio of max new tokens to minimum tokens required to hide message",
|
67 |
)
|
68 |
# Input
|
@@ -89,7 +91,7 @@ def create_args():
|
|
89 |
"--start-pos",
|
90 |
type=int,
|
91 |
nargs="+",
|
92 |
-
default=[
|
93 |
help="Start position to input the text (not including window length). If 2 integers are provided, choose the position randomly between the two values.",
|
94 |
)
|
95 |
# Mode
|
|
|
6 |
|
7 |
from stegno import generate, decrypt
|
8 |
from utils import load_model
|
9 |
+
from global_config import GlobalConfig
|
10 |
+
from model_factory import ModelFactory
|
11 |
|
12 |
|
13 |
def create_args():
|
|
|
17 |
parser.add_argument(
|
18 |
"--gen-model",
|
19 |
type=str,
|
20 |
+
default=GlobalConfig.get("encrypt.default", "gen_model"),
|
21 |
help="Generative model (LLM) used to generate text",
|
22 |
)
|
23 |
parser.add_argument(
|
|
|
27 |
parser.add_argument(
|
28 |
"--gamma",
|
29 |
type=float,
|
30 |
+
default=GlobalConfig.get("encrypt.default", "gamma"),
|
31 |
help="Bias added to scores of tokens in valid list",
|
32 |
)
|
33 |
parser.add_argument(
|
34 |
"--msg-base",
|
35 |
type=int,
|
36 |
+
default=GlobalConfig.get("encrypt.default", "msg_base"),
|
37 |
help="Base of message",
|
38 |
)
|
39 |
parser.add_argument(
|
40 |
"--seed-scheme",
|
41 |
type=str,
|
42 |
+
default=GlobalConfig.get("encrypt.default", "seed_scheme"),
|
43 |
help="Scheme used to compute the seed",
|
44 |
)
|
45 |
parser.add_argument(
|
46 |
"--window-length",
|
47 |
type=int,
|
48 |
+
default=GlobalConfig.get("encrypt.default", "window_length"),
|
49 |
help="Length of window to compute the seed",
|
50 |
)
|
51 |
parser.add_argument(
|
|
|
58 |
parser.add_argument(
|
59 |
"--num-beams",
|
60 |
type=int,
|
61 |
+
default=GlobalConfig.get("encrypt.default", "num_beams"),
|
62 |
help="Number of beams used in beam search",
|
63 |
)
|
64 |
parser.add_argument(
|
65 |
"--max-new-tokens-ratio",
|
66 |
type=float,
|
67 |
+
default=GlobalConfig.get("encrypt.default", "max_new_tokens_ratio"),
|
68 |
help="Ratio of max new tokens to minimum tokens required to hide message",
|
69 |
)
|
70 |
# Input
|
|
|
91 |
"--start-pos",
|
92 |
type=int,
|
93 |
nargs="+",
|
94 |
+
default=[GlobalConfig.get("encrypt.default", "start_pos")],
|
95 |
help="Start position to input the text (not including window length). If 2 integers are provided, choose the position randomly between the two values.",
|
96 |
)
|
97 |
# Mode
|
processors.py
CHANGED
@@ -52,7 +52,9 @@ class BaseProcessor(object):
|
|
52 |
self.rng = torch.Generator(device="cpu")
|
53 |
|
54 |
# Compute the ranges of each value in base
|
55 |
-
self.ranges = torch.zeros((self.msg_base + 1), dtype=torch.int64).to(
|
|
|
|
|
56 |
chunk_size = self.vocab_size / self.msg_base
|
57 |
r = self.vocab_size % self.msg_base
|
58 |
self.ranges[1:] = chunk_size
|
@@ -103,6 +105,7 @@ class EncryptorLogitsProcessor(LogitsProcessor, BaseProcessor):
|
|
103 |
prompt_ids: torch.Tensor,
|
104 |
msg: bytes,
|
105 |
gamma: float,
|
|
|
106 |
start_pos: int = 0,
|
107 |
*args,
|
108 |
**kwargs,
|
@@ -124,6 +127,15 @@ class EncryptorLogitsProcessor(LogitsProcessor, BaseProcessor):
|
|
124 |
self.raw_msg = msg
|
125 |
self.msg = bytes_to_base(msg, self.msg_base)
|
126 |
self.gamma = gamma
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
|
128 |
def __call__(
|
129 |
self, input_ids_batch: torch.LongTensor, scores_batch: torch.FloatTensor
|
@@ -147,7 +159,10 @@ class EncryptorLogitsProcessor(LogitsProcessor, BaseProcessor):
|
|
147 |
"""
|
148 |
Add the bias (gamma) to the valid list tokens
|
149 |
"""
|
150 |
-
ids =
|
|
|
|
|
|
|
151 |
scores[ids] = scores[ids] + self.gamma
|
152 |
return scores
|
153 |
|
|
|
52 |
self.rng = torch.Generator(device="cpu")
|
53 |
|
54 |
# Compute the ranges of each value in base
|
55 |
+
self.ranges = torch.zeros((self.msg_base + 1), dtype=torch.int64).to(
|
56 |
+
self.device
|
57 |
+
)
|
58 |
chunk_size = self.vocab_size / self.msg_base
|
59 |
r = self.vocab_size % self.msg_base
|
60 |
self.ranges[1:] = chunk_size
|
|
|
105 |
prompt_ids: torch.Tensor,
|
106 |
msg: bytes,
|
107 |
gamma: float,
|
108 |
+
tokenizer,
|
109 |
start_pos: int = 0,
|
110 |
*args,
|
111 |
**kwargs,
|
|
|
127 |
self.raw_msg = msg
|
128 |
self.msg = bytes_to_base(msg, self.msg_base)
|
129 |
self.gamma = gamma
|
130 |
+
special_tokens = [
|
131 |
+
tokenizer.bos_token_id,
|
132 |
+
tokenizer.eos_token_id,
|
133 |
+
tokenizer.sep_token_id,
|
134 |
+
tokenizer.pad_token_id,
|
135 |
+
tokenizer.cls_token_id,
|
136 |
+
]
|
137 |
+
special_tokens = [x for x in special_tokens if x is not None]
|
138 |
+
self.special_tokens = torch.tensor(special_tokens, device=self.device)
|
139 |
|
140 |
def __call__(
|
141 |
self, input_ids_batch: torch.LongTensor, scores_batch: torch.FloatTensor
|
|
|
159 |
"""
|
160 |
Add the bias (gamma) to the valid list tokens
|
161 |
"""
|
162 |
+
ids = torch.cat(
|
163 |
+
[self._get_valid_list_ids(input_ids, value), self.special_tokens]
|
164 |
+
)
|
165 |
+
|
166 |
scores[ids] = scores[ids] + self.gamma
|
167 |
return scores
|
168 |
|
requirements.txt
CHANGED
@@ -7,3 +7,4 @@ torch==2.3.0
|
|
7 |
cryptography==42.0.8
|
8 |
fastapi
|
9 |
gradio
|
|
|
|
7 |
cryptography==42.0.8
|
8 |
fastapi
|
9 |
gradio
|
10 |
+
uvicorn
|
schemes.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from pydantic import BaseModel
|
2 |
+
from global_config import GlobalConfig
|
3 |
+
|
4 |
+
|
5 |
+
class EncryptionBody(BaseModel):
|
6 |
+
prompt: str
|
7 |
+
msg: str
|
8 |
+
gen_model: str = GlobalConfig.get("encrypt.default", "gen_model")
|
9 |
+
start_pos: int = GlobalConfig.get("encrypt.default", "start_pos")
|
10 |
+
|
11 |
+
gamma: float = GlobalConfig.get("encrypt.default", "gamma")
|
12 |
+
msg_base: int = GlobalConfig.get("encrypt.default", "msg_base")
|
13 |
+
|
14 |
+
seed_scheme: str = GlobalConfig.get("encrypt.default", "seed_scheme")
|
15 |
+
window_length: int = GlobalConfig.get(
|
16 |
+
"encrypt.default", "window_length"
|
17 |
+
)
|
18 |
+
private_key: int = GlobalConfig.get("encrypt.default", "private_key")
|
19 |
+
max_new_tokens_ratio: float = GlobalConfig.get(
|
20 |
+
"encrypt.default", "max_new_tokens_ratio"
|
21 |
+
)
|
22 |
+
num_beams: int = GlobalConfig.get("encrypt.default", "num_beams")
|
23 |
+
|
24 |
+
class DecryptionBody(BaseModel):
|
25 |
+
text: str
|
26 |
+
gen_model: str = GlobalConfig.get("decrypt.default", "gen_model")
|
27 |
+
msg_base: int = GlobalConfig.get("decrypt.default", "msg_base")
|
28 |
+
|
29 |
+
seed_scheme: str = GlobalConfig.get("decrypt.default", "seed_scheme")
|
30 |
+
window_length: int = GlobalConfig.get(
|
31 |
+
"decrypt.default", "window_length"
|
32 |
+
)
|
33 |
+
private_key: int = GlobalConfig.get("decrypt.default", "private_key")
|
stegno.py
CHANGED
@@ -54,6 +54,7 @@ def generate(
|
|
54 |
gamma=gamma,
|
55 |
msg_base=msg_base,
|
56 |
vocab=list(tokenizer.get_vocab().values()),
|
|
|
57 |
device=model.device,
|
58 |
seed_scheme=seed_scheme,
|
59 |
window_length=window_length,
|
|
|
54 |
gamma=gamma,
|
55 |
msg_base=msg_base,
|
56 |
vocab=list(tokenizer.get_vocab().values()),
|
57 |
+
tokenizer=tokenizer,
|
58 |
device=model.device,
|
59 |
seed_scheme=seed_scheme,
|
60 |
window_length=window_length,
|
utils.py
CHANGED
@@ -50,3 +50,8 @@ def load_model(name: str, device: torch.device):
|
|
50 |
tokenizer = AutoTokenizer.from_pretrained(name)
|
51 |
|
52 |
return model, tokenizer
|
|
|
|
|
|
|
|
|
|
|
|
50 |
tokenizer = AutoTokenizer.from_pretrained(name)
|
51 |
|
52 |
return model, tokenizer
|
53 |
+
|
54 |
+
def static_init(cls):
|
55 |
+
if getattr(cls, "__static_init__", None):
|
56 |
+
cls.__static_init__()
|
57 |
+
return cls
|