Spaces:
Running
on
Zero
Running
on
Zero
File size: 15,258 Bytes
917fe92 fc6f56d 917fe92 b5dfbe4 917fe92 0e18ab2 917fe92 0e18ab2 917fe92 0e18ab2 917fe92 fc6f56d 917fe92 c12c627 b5dfbe4 fc6f56d 917fe92 0e18ab2 917fe92 0e18ab2 917fe92 b5dfbe4 917fe92 c12c627 b5dfbe4 fc6f56d 917fe92 b5dfbe4 917fe92 b5dfbe4 917fe92 b5dfbe4 917fe92 b5dfbe4 917fe92 0e18ab2 917fe92 b5dfbe4 917fe92 c12c627 fc6f56d 917fe92 0e18ab2 917fe92 b5dfbe4 0e18ab2 b5dfbe4 0e18ab2 917fe92 0e18ab2 917fe92 b5dfbe4 0e18ab2 b5dfbe4 0e18ab2 917fe92 0e18ab2 917fe92 b5dfbe4 917fe92 b5dfbe4 0e18ab2 917fe92 fc6f56d 917fe92 74bd10c b5dfbe4 917fe92 b5dfbe4 917fe92 146da98 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 |
import spaces
import os
import numpy as np
from PIL import Image
from omegaconf import OmegaConf
from functools import partial
import gradio as gr
from huggingface_hub import hf_hub_download
import torch
from torchvision import transforms
import rembg
import cv2
from pytorch_lightning import seed_everything
from src.visualizer import CameraVisualizer
from src.pose_estimation import load_model_from_config, estimate_poses, estimate_elevs
from src.pose_funcs import find_optimal_poses
from src.utils import spherical_to_cartesian, elu_to_c2w
if torch.cuda.is_available():
_device_ = 'cuda:0'
else:
_device_ = 'cpu'
_config_path_ = 'src/configs/sd-objaverse-finetune-c_concat-256.yaml'
_ckpt_path_ = hf_hub_download(repo_id='tokenid/ID-Pose', filename='ckpts/zero123-xl.ckpt', repo_type='model')
_matcher_ckpt_path_ = hf_hub_download(repo_id='tokenid/ID-Pose', filename='ckpts/indoor_ds_new.ckpt', repo_type='model')
_config_ = OmegaConf.load(_config_path_)
_model_ = load_model_from_config(_config_, _ckpt_path_, device='cpu')
_model_ = _model_.to(_device_)
_model_.eval()
def rgba_to_rgb(img):
assert img.mode == 'RGBA'
img = np.asarray(img, dtype=np.float32)
img[:, :, :3] = img[:, :, :3] * (img[..., 3:]/255.) + (255-img[..., 3:])
img = img.clip(0, 255).astype(np.uint8)
return Image.fromarray(img[:, :, :3])
def remove_background(image, rembg_session = None, force = False, **rembg_kwargs):
do_remove = True
if image.mode == "RGBA" and image.getextrema()[3][0] < 255:
do_remove = False
do_remove = do_remove or force
if do_remove:
image = rembg.remove(image, session=rembg_session, **rembg_kwargs)
return image
def group_recenter(images, ratio=1.5, mask_thres=127, bkg_color=[255, 255, 255, 255]):
ws = []
hs = []
images = [ np.asarray(img) for img in images ]
for img in images:
alpha = img[:, :, 3]
yy, xx = np.where(alpha > mask_thres)
y0, y1 = yy.min(), yy.max()
x0, x1 = xx.min(), xx.max()
ws.append(float(x1 - x0) / img.shape[0])
hs.append(float(y1 - y0) / img.shape[1])
sz_w = np.max(ws)
sz_h = np.max(hs)
sz = max(ratio*sz_w, ratio*sz_h)
out_rgbs = []
for rgba in images:
rgb = rgba[:, :, :3]
alpha = rgba[:, :, 3]
yy, xx = np.where(alpha > mask_thres)
y0, y1 = yy.min(), yy.max()
x0, x1 = xx.min(), xx.max()
height, width, chn = rgb.shape
cy = (y0 + y1) // 2
cx = (x0 + x1) // 2
y0 = cy - int(np.floor(sz * rgba.shape[0] / 2))
y1 = cy + int(np.ceil(sz * rgba.shape[0] / 2))
x0 = cx - int(np.floor(sz * rgba.shape[1] / 2))
x1 = cx + int(np.ceil(sz * rgba.shape[1] / 2))
out = rgba[ max(y0, 0) : min(y1, height) , max(x0, 0) : min(x1, width), : ].copy()
pads = [(max(0-y0, 0), max(y1-height, 0)), (max(0-x0, 0), max(x1-width, 0)), (0, 0)]
out = np.pad(out, pads, mode='constant', constant_values=0)
out[:, :, :3] = out[:, :, :3] * (out[..., 3:]/255.) + np.array(bkg_color)[None, None, :3] * (1-out[..., 3:]/255.)
out[:, :, -1] = bkg_color[-1]
out = cv2.resize(out.astype(np.uint8), (256, 256))
out = out[:, :, :3]
out_rgbs.append(out)
return out_rgbs
def run_preprocess(image1, image2, preprocess_chk, seed_value):
seed_everything(seed_value)
if preprocess_chk:
rembg_session = rembg.new_session()
image1 = remove_background(image1, force=True, rembg_session = rembg_session)
image2 = remove_background(image2, force=True, rembg_session = rembg_session)
rgbs = group_recenter([image1, image2])
image1 = Image.fromarray(rgbs[0])
image2 = Image.fromarray(rgbs[1])
return image1, image2
def image_to_tensor(img, width=256, height=256):
img = transforms.ToTensor()(img).unsqueeze(0)
img = img * 2 - 1
img = transforms.functional.resize(img, [height, width])
return img
@spaces.GPU(duration=110)
def run_pose_exploration(image1, image2, probe_bsz, adj_bsz, adj_iters, seed_value):
seed_everything(seed_value)
image1 = image_to_tensor(image1).to(_device_)
image2 = image_to_tensor(image2).to(_device_)
images = [image1, image2]
elevs, elev_ranges = estimate_elevs(
_model_, images,
est_type='all',
matcher_ckpt_path=_matcher_ckpt_path_
)
anchor_polar = elevs[0]
if torch.mean(torch.abs(image1 - image2)) < 0.005:
theta = azimuth = radius = 0
print('Identical images found!')
else:
noise = np.random.randn(probe_bsz, 4, 32, 32)
result_poses, aux_data = estimate_poses(
_model_, images,
seed_cand_num=8,
explore_type='triangular',
refine_type='triangular',
probe_ts_range=[0.2, 0.21],
ts_range=[0.2, 0.21],
probe_bsz=probe_bsz,
adjust_factor=10.0,
adjust_iters=adj_iters,
adjust_bsz=adj_bsz,
refine_factor=1.0,
refine_iters=0,
refine_bsz=4,
noise=noise,
elevs=elevs,
elev_ranges=elev_ranges
)
theta, azimuth, radius = result_poses[0]
if anchor_polar is None:
anchor_polar = np.pi/2
explored_sph = (theta, azimuth, radius)
return anchor_polar, explored_sph
@spaces.GPU(duration=110)
def run_pose_refinement(image1, image2, est_result, refine_iters, seed_value):
seed_everything(seed_value)
anchor_polar = est_result[0]
explored_sph = est_result[1]
images = [image_to_tensor(image1).to(_device_), image_to_tensor(image2).to(_device_)]
images = [ img.permute(0, 2, 3, 1) for img in images ]
out_poses, _, loss = find_optimal_poses(
_model_, images,
1.0,
bsz=1,
n_iter=refine_iters,
init_poses={1: explored_sph},
ts_range=[0.2, 0.21],
combinations=[(0, 1), (1, 0)],
avg_last_n=20,
print_n=100
)
final_sph = out_poses[0]
theta, azimuth, radius = final_sph
xyz0 = spherical_to_cartesian((anchor_polar, 0., 4.))
c2w0 = elu_to_c2w(xyz0, np.zeros(3), np.array([0., 0., 1.]))
xyz1 = spherical_to_cartesian((theta + anchor_polar, 0. + azimuth, 4. + radius))
c2w1 = elu_to_c2w(xyz1, np.zeros(3), np.array([0., 0., 1.]))
cam_vis = CameraVisualizer([c2w0, c2w1], ['Image 1', 'Image 2'], ['red', 'blue'], images=[np.asarray(image1, dtype=np.uint8), np.asarray(image2, dtype=np.uint8)])
fig = cam_vis.update_figure(5, base_radius=-1.2, font_size=16, show_background=True, show_grid=True, show_ticklabels=True)
return (anchor_polar, final_sph), fig
def run_example(image1, image2):
image1, image2 = run_preprocess(image1, image2, True, 0)
anchor_polar, explored_sph = run_pose_exploration(image1, image2, 16, 4, 10, 0)
return (anchor_polar, explored_sph), image1, image2
def run_or_visualize(image1, image2, probe_bsz, adj_bsz, adj_iters, seed_value, est_result):
if est_result is None:
anchor_polar, explored_sph = run_pose_exploration(image1, image2, probe_bsz, adj_bsz, adj_iters, seed_value)
else:
anchor_polar = est_result[0]
explored_sph = est_result[1]
print('Using cache result.')
xyz0 = spherical_to_cartesian((anchor_polar, 0., 4.))
c2w0 = elu_to_c2w(xyz0, np.zeros(3), np.array([0., 0., 1.]))
xyz1 = spherical_to_cartesian((explored_sph[0] + anchor_polar, 0. + explored_sph[1], 4. + explored_sph[2]))
c2w1 = elu_to_c2w(xyz1, np.zeros(3), np.array([0., 0., 1.]))
cam_vis = CameraVisualizer([c2w0, c2w1], ['Image 1', 'Image 2'], ['red', 'blue'], images=[np.asarray(image1, dtype=np.uint8), np.asarray(image2, dtype=np.uint8)])
fig = cam_vis.update_figure(5, base_radius=-1.2, font_size=16, show_background=True, show_grid=True, show_ticklabels=True)
return (anchor_polar, explored_sph), fig, gr.update(interactive=True)
_HEADER_ = '''
# Official 🤗 Gradio Demo for [ID-Pose: Sparse-view Camera Pose Estimation By Inverting Diffusion Models](https://github.com/xt4d/id-pose)
- ID-Pose accepts input images with NO overlapping appearance.
- The estimation takes about 1 minute. ZeroGPU may be halted during processing due to quota restrictions.
'''
_FOOTER_ = '''
[Project Page](https://xt4d.github.io/id-pose-web/) | ⭐ [Github](https://github.com/xt4d/id-pose) ⭐ [![GitHub Stars](https://img.shields.io/github/stars/xt4d/id-pose?style=social)](https://github.com/xt4d/id-pose)
---
'''
_CITE_ = r"""
```bibtex
@article{cheng2023id,
title={ID-Pose: Sparse-view Camera Pose Estimation by Inverting Diffusion Models},
author={Cheng, Weihao and Cao, Yan-Pei and Shan, Ying},
journal={arXiv preprint arXiv:2306.17140},
year={2023}
}
```
"""
def run_demo():
demo = gr.Blocks(title='ID-Pose: Sparse-view Camera Pose Estimation By Inverting Diffusion Models')
with demo:
est_result = gr.JSON(visible=False)
gr.Markdown(_HEADER_)
with gr.Row(variant='panel'):
with gr.Column(scale=1):
with gr.Row():
with gr.Column(min_width=280):
input_image1 = gr.Image(type='pil', image_mode='RGBA', label='Input Image 1', width=280)
with gr.Column(min_width=280):
input_image2 = gr.Image(type='pil', image_mode='RGBA', label='Input Image 2', width=280)
with gr.Row():
with gr.Column(min_width=280):
processed_image1 = gr.Image(type='numpy', image_mode='RGB', label='Processed Image 1', width=280, interactive=False)
with gr.Column(min_width=280):
processed_image2 = gr.Image(type='numpy', image_mode='RGB', label='Processed Image 2', width=280, interactive=False)
with gr.Row():
preprocess_chk = gr.Checkbox(True, label='Remove background and recenter object')
with gr.Accordion('Advanced options', open=False):
probe_bsz = gr.Slider(4, 32, value=16, step=4, label='Probe Batch Size')
adj_bsz = gr.Slider(1, 8, value=4, step=1, label='Adjust Batch Size')
adj_iters = gr.Slider(1, 20, value=10, step=1, label='Adjust Iterations')
seed_value = gr.Number(value=0, label="Seed Value", precision=0)
with gr.Row():
run_btn = gr.Button('Estimate', variant='primary', interactive=True)
with gr.Row():
refine_iters = gr.Slider(0, 1000, value=0, step=50, label='Refinement Iterations')
with gr.Row():
refine_btn = gr.Button('Refine', variant='primary', interactive=False)
with gr.Row():
gr.Markdown(_FOOTER_)
with gr.Row():
gr.Markdown(_CITE_)
with gr.Column(scale=1.4):
with gr.Row():
vis_output = gr.Plot(label='Camera Pose Results: anchor (red) and target (blue)')
with gr.Row():
with gr.Column(min_width=200):
gr.Examples(
examples = [
['data/gradio_demo/duck_0.png', 'data/gradio_demo/duck_1.png'],
['data/gradio_demo/chair_0.png', 'data/gradio_demo/chair_1.png'],
['data/gradio_demo/foosball_0.png', 'data/gradio_demo/foosball_1.png'],
['data/gradio_demo/bunny_0.png', 'data/gradio_demo/bunny_1.png'],
['data/gradio_demo/circo_0.png', 'data/gradio_demo/circo_1.png'],
],
inputs=[input_image1, input_image2],
fn=run_example,
outputs=[est_result, processed_image1, processed_image2],
label='Examples (Captured)',
cache_examples='lazy',
examples_per_page=5
)
with gr.Column(min_width=200):
gr.Examples(
examples = [
['data/gradio_demo/arc_0.png', 'data/gradio_demo/arc_1.png'],
['data/gradio_demo/husky_0.png', 'data/gradio_demo/husky_1.png'],
['data/gradio_demo/cybertruck_0.png', 'data/gradio_demo/cybertruck_1.png'],
['data/gradio_demo/plane_0.png', 'data/gradio_demo/plane_1.png'],
['data/gradio_demo/christ_0.png', 'data/gradio_demo/christ_1.png'],
],
inputs=[input_image1, input_image2],
fn=run_example,
outputs=[est_result, processed_image1, processed_image2],
label='Examples (Internet)',
cache_examples='lazy',
examples_per_page=5
)
with gr.Column(min_width=200):
gr.Examples(
examples = [
['data/gradio_demo/status_0.png', 'data/gradio_demo/status_1.png'],
['data/gradio_demo/cat_0.png', 'data/gradio_demo/cat_1.png'],
['data/gradio_demo/ferrari_0.png', 'data/gradio_demo/ferrari_1.png'],
['data/gradio_demo/elon_0.png', 'data/gradio_demo/elon_1.png'],
['data/gradio_demo/ride_horse_0.png', 'data/gradio_demo/ride_horse_1.png'],
],
inputs=[input_image1, input_image2],
fn=run_example,
outputs=[est_result, processed_image1, processed_image2],
label='Examples (Generated)',
cache_examples='lazy',
examples_per_page=5
)
run_btn.click(
fn=run_preprocess,
inputs=[input_image1, input_image2, preprocess_chk, seed_value],
outputs=[processed_image1, processed_image2],
).success(
fn=run_or_visualize,
inputs=[processed_image1, processed_image2, probe_bsz, adj_bsz, adj_iters, seed_value, est_result],
outputs=[est_result, vis_output, refine_btn]
)
refine_btn.click(
fn=run_pose_refinement,
inputs=[processed_image1, processed_image2, est_result, refine_iters, seed_value],
outputs=[est_result, vis_output]
)
input_image1.clear(
fn=lambda: None,
outputs=[est_result]
)
input_image2.clear(
fn=lambda: None,
outputs=[est_result]
)
demo.launch()
if __name__ == '__main__':
run_demo()
|