ID-Pose / src /configs /sd-objaverse-finetune-c_concat-256.yaml
tokenid
upload
917fe92
raw
history blame
3.01 kB
model:
base_learning_rate: 1.0e-04
target: src.ldm.models.diffusion.ddpm.LatentDiffusion
params:
linear_start: 0.00085
linear_end: 0.0120
num_timesteps_cond: 1
log_every_t: 200
timesteps: 1000
first_stage_key: "image_target"
cond_stage_key: "image_cond"
image_size: 32
channels: 4
cond_stage_trainable: false # Note: different from the one we trained before
conditioning_key: hybrid
monitor: val/loss_simple_ema
scale_factor: 0.18215
scheduler_config: # 10000 warmup steps
target: src.ldm.lr_scheduler.LambdaLinearScheduler
params:
warm_up_steps: [ 100 ]
cycle_lengths: [ 10000000000000 ] # incredibly large number to prevent corner cases
f_start: [ 1.e-6 ]
f_max: [ 1. ]
f_min: [ 1. ]
unet_config:
target: src.ldm.modules.diffusionmodules.openaimodel.UNetModel
params:
image_size: 32 # unused
in_channels: 8
out_channels: 4
model_channels: 320
attention_resolutions: [ 4, 2, 1 ]
num_res_blocks: 2
channel_mult: [ 1, 2, 4, 4 ]
num_heads: 8
use_spatial_transformer: True
transformer_depth: 1
context_dim: 768
use_checkpoint: True
legacy: False
first_stage_config:
target: src.ldm.models.autoencoder.AutoencoderKL
params:
embed_dim: 4
monitor: val/rec_loss
ddconfig:
double_z: true
z_channels: 4
resolution: 256
in_channels: 3
out_ch: 3
ch: 128
ch_mult:
- 1
- 2
- 4
- 4
num_res_blocks: 2
attn_resolutions: []
dropout: 0.0
lossconfig:
target: torch.nn.Identity
cond_stage_config:
target: src.ldm.modules.encoders.modules.FrozenCLIPImageEmbedder
params:
clip_root: 'ckpts/'
data:
target: src.ldm.data.simple.ObjaverseDataModuleFromConfig
params:
root_dir: 'views_whole_sphere'
batch_size: 192
num_workers: 16
total_view: 4
train:
validation: False
image_transforms:
size: 256
validation:
validation: True
image_transforms:
size: 256
lightning:
find_unused_parameters: false
metrics_over_trainsteps_checkpoint: True
modelcheckpoint:
params:
every_n_train_steps: 5000
callbacks:
image_logger:
target: main.ImageLogger
params:
batch_frequency: 500
max_images: 32
increase_log_steps: False
log_first_step: True
log_images_kwargs:
use_ema_scope: False
inpaint: False
plot_progressive_rows: False
plot_diffusion_rows: False
N: 32
unconditional_guidance_scale: 3.0
unconditional_guidance_label: [""]
trainer:
benchmark: True
val_check_interval: 5000000 # really sorry
num_sanity_val_steps: 0
accumulate_grad_batches: 1