Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import numpy as np | |
def append_dims(x, target_dims): | |
"""Appends dimensions to the end of a tensor until it has target_dims dimensions. | |
From https://github.com/crowsonkb/k-diffusion/blob/master/k_diffusion/utils.py""" | |
dims_to_append = target_dims - x.ndim | |
if dims_to_append < 0: | |
raise ValueError(f'input has {x.ndim} dims but target_dims is {target_dims}, which is less') | |
return x[(...,) + (None,) * dims_to_append] | |
def renorm_thresholding(x0, value): | |
# renorm | |
pred_max = x0.max() | |
pred_min = x0.min() | |
pred_x0 = (x0 - pred_min) / (pred_max - pred_min) # 0 ... 1 | |
pred_x0 = 2 * pred_x0 - 1. # -1 ... 1 | |
s = torch.quantile( | |
rearrange(pred_x0, 'b ... -> b (...)').abs(), | |
value, | |
dim=-1 | |
) | |
s.clamp_(min=1.0) | |
s = s.view(-1, *((1,) * (pred_x0.ndim - 1))) | |
# clip by threshold | |
# pred_x0 = pred_x0.clamp(-s, s) / s # needs newer pytorch # TODO bring back to pure-gpu with min/max | |
# temporary hack: numpy on cpu | |
pred_x0 = np.clip(pred_x0.cpu().numpy(), -s.cpu().numpy(), s.cpu().numpy()) / s.cpu().numpy() | |
pred_x0 = torch.tensor(pred_x0).to(self.model.device) | |
# re.renorm | |
pred_x0 = (pred_x0 + 1.) / 2. # 0 ... 1 | |
pred_x0 = (pred_max - pred_min) * pred_x0 + pred_min # orig range | |
return pred_x0 | |
def norm_thresholding(x0, value): | |
s = append_dims(x0.pow(2).flatten(1).mean(1).sqrt().clamp(min=value), x0.ndim) | |
return x0 * (value / s) | |
def spatial_norm_thresholding(x0, value): | |
# b c h w | |
s = x0.pow(2).mean(1, keepdim=True).sqrt().clamp(min=value) | |
return x0 * (value / s) |