Spaces:
Runtime error
Runtime error
File size: 38,649 Bytes
1fc4a91 fa77a94 9bf51b3 7a55bf3 cdcd811 daeee2d a19e57a 15db416 c0d0912 c7ea4e6 2db9643 ed020d7 a12c054 44997cc d0e9c6f 716e382 c99cf8d 096c8a3 11542b4 000c43f f969130 ccf297a 2147584 ef5a116 21b7e4a 09fba9b 6e689e9 cabd8bd 8dedeb1 21fedd1 59d45fa e078ee3 6fdec3c 0734a05 45cea5d 000c43f 1fc4a91 5da0d3d a359b6d cd7f3ee a359b6d 6cf80c2 a359b6d 6cf80c2 a359b6d 1b101d7 a359b6d 5e22611 a359b6d 5e22611 a359b6d 5e22611 a359b6d 4a237f8 a359b6d 0508515 6f7ae8f 0508515 6f7ae8f a359b6d 5e22611 a359b6d 0508515 69f4625 0508515 9f8acba 0508515 9f8acba 0508515 9f8acba 0508515 9f8acba 0508515 a359b6d aa33c7d a359b6d 97f9c0c a359b6d 97cc1f0 eebc5e9 359e6bf 4746b63 97cc1f0 b65cd60 97cc1f0 1b101d7 cffda6e 1b101d7 6f7ae8f 1b101d7 cffda6e 2db66d7 6f7ae8f 1b101d7 6f7ae8f 940a33d c8dc4cf 6f7ae8f 359e6bf 940a33d 6f7ae8f 1707f2c 6f7ae8f 97cc1f0 eebc5e9 97cc1f0 e7d490b 9e2e3c5 e7d490b 9e2e3c5 e7d490b 1fc4a91 877dee8 3e688a4 97cc1f0 1fc4a91 c3062cb 1fc4a91 c3062cb 877dee8 97cc1f0 359e6bf 97cc1f0 b65cd60 97cc1f0 b65cd60 75d45a1 97cc1f0 359e6bf 5cb92bb e7d490b 97cc1f0 5e22611 877dee8 453901b 877dee8 453901b 877dee8 a359b6d 877dee8 a359b6d 877dee8 a359b6d 877dee8 c57aea2 877dee8 c57aea2 ebc5fd4 c57aea2 ebc5fd4 c57aea2 877dee8 1b101d7 877dee8 1b101d7 6f7ae8f 1b101d7 2db66d7 6f7ae8f 1b101d7 6f7ae8f 1b101d7 877dee8 6f7ae8f 1707f2c 6f7ae8f 1fc4a91 8002875 9761641 877dee8 3e688a4 877dee8 c52f268 1fc4a91 877dee8 8002875 877dee8 4eca7fa ebc5fd4 877dee8 c57aea2 877dee8 1fc4a91 877dee8 6b22177 1fc4a91 6b22177 77195a0 6b22177 3e688a4 ae2e61f 8c948ed 1fc4a91 6b22177 3b5016f 6b22177 3b5016f 901b267 97cc1f0 a05b949 096c8a3 e55b1e1 096c8a3 e55b1e1 096c8a3 eebc5e9 096c8a3 a05b949 7ca5f13 a05b949 7ca5f13 a05b949 7ca5f13 a05b949 7ca5f13 a05b949 7ca5f13 a05b949 7ca5f13 a05b949 7ca5f13 a05b949 5f04ab8 9f8acba 69f4625 211a2dd 9f8acba 69f4625 9f8acba 69f4625 9f8acba 69f4625 9f8acba 211a2dd 69f4625 9f8acba bf228e4 3fdba19 9f8acba bf228e4 9f8acba 69f4625 bf228e4 211a2dd bf228e4 69f4625 9f8acba 69f4625 bf228e4 211a2dd 9f8acba 69f4625 bf228e4 9f8acba 211a2dd 9f8acba 211a2dd 3fdba19 9f8acba 211a2dd 9f8acba bf228e4 211a2dd 9f8acba 69f4625 3fdba19 69f4625 3fdba19 69f4625 e084c52 408bc8f e084c52 f15b78d e084c52 1fc4a91 97cc1f0 c4346cf db51da1 871d7f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 |
# ----- Deployment Log -----------------------------------------------------------------
# added beta 4305ed7
# added beta 4307f62
# added presidents beta
# added painting concept
# added presidents concept
# added presidents concept #2
# added philip guston concept (retry)
# added Ken Price trainings (retry)
# added Andrei Tarkovsky polaroid training
# added Andrei Tarkovsky polaroid training (retry)
# added HairBot training
# redeploy with canny edge tab
# try to redeploy
# try to redeploy again
# add myst training
# add coin training
# add zodiac coin training
# readding artbot tab after dependency crashes fixed
# attempt redeploy after crash
# attempt redeploy after crash 2
# attempt redeploy after crash 3
# attempt redeploy after crash 4
# attempt redeploy after crash 5
# attempt redeploy after crash 6
# attempt redeploy after crash 7
# attempt redeploy after crash 8
# redeploy after locked up build 1
# added woodblock beta training
# attempt redeploy after crash
# added new concept
# attempting reboot 2
# attempting reboot 1
# restart after configuration error
# restart after runtime build error
# force test redeploy
# ----- General Setup -----------------------------------------------------------------
import requests
import os
import gradio as gr
import wget
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from huggingface_hub import HfApi
from transformers import CLIPTextModel, CLIPTokenizer
import html
import datetime
image_count = 0
community_icon_html = ""
loading_icon_html = ""
share_js = ""
api = HfApi()
models_list = api.list_models(author="sd-concepts-library", sort="likes", direction=-1)
models = []
my_token = os.environ['api_key']
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16, use_auth_token=my_token).to("cuda")
def check_prompt(prompt):
SPAM_WORDS = ['Π', 'oob', 'reast'] # only necessary to limit spam
for spam_word in SPAM_WORDS:
if spam_word in prompt:
return False
return True
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
_old_token = token
# separate token and the embeds
trained_token = list(loaded_learned_embeds.keys())[0]
embeds = loaded_learned_embeds[trained_token]
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
# add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer.add_tokens(token)
i = 1
while(num_added_tokens == 0):
token = f"{token[:-1]}-{i}>"
num_added_tokens = tokenizer.add_tokens(token)
i+=1
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
return token
# ----- ControlNet Canny Edges Pipe / Setup -----------------------------------------------------------------
# import gradio as gr
# from PIL import Image
# import numpy as np
# import cv2
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
# from diffusers import UniPCMultistepScheduler
# import torch
# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
# controlnet_pipe = StableDiffusionControlNetPipeline.from_pretrained(
# "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
# )
# controlnet_pipe.scheduler = UniPCMultistepScheduler.from_config(controlnet_pipe.scheduler.config)
# controlnet_pipe.enable_model_cpu_offload()
# controlnet_pipe.enable_xformers_memory_efficient_attention()
# ----- Load All models / concepts -----------------------------------------------------------------
ahx_model_list = [model for model in models_list if "ahx" in model.modelId]
ahx_dropdown_list = [model for model in models_list if "ahx-model" in model.modelId]
for model in ahx_model_list:
model_content = {}
model_id = model.modelId
model_content["id"] = model_id
embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin"
os.makedirs(model_id,exist_ok = True)
if not os.path.exists(f"{model_id}/learned_embeds.bin"):
try:
wget.download(embeds_url, out=model_id)
except:
continue
token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt"
response = requests.get(token_identifier)
token_name = response.text
concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt"
response = requests.get(concept_type)
concept_name = response.text
model_content["concept_type"] = concept_name
images = []
for i in range(4):
url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg"
image_download = requests.get(url)
url_code = image_download.status_code
if(url_code == 200):
file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image
file.write(image_download.content) ## Saves file content
file.close()
images.append(f"{model_id}/{i}.jpeg")
model_content["images"] = images
#if token cannot be loaded, skip it
try:
learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name)
# _learned_token_controlnet = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", controlnet_pipe.text_encoder, controlnet_pipe.tokenizer, token_name)
except:
continue
model_content["token"] = learned_token
models.append(model_content)
models.append(model_content)
# -----------------------------------------------------------------------------------------------
model_tags = [model.modelId.split("/")[1] for model in ahx_model_list]
model_tags.sort()
import random
DROPDOWNS = {}
for model in model_tags:
if model != "ahx-model-1" and model != "ahx-model-2":
DROPDOWNS[model] = f" in the style of <{model}>"
TOKENS = []
for model in model_tags:
if model != "ahx-model-1" and model != "ahx-model-2":
TOKENS.append(f"<{model}>")
# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width, negative_prompt=""):
def image_prompt(prompt, guidance, steps, seed, height, width, negative_prompt=""):
# prompt = prompt + DROPDOWNS[dropdown]
square_pixels = height * width
if square_pixels > 640000:
height = 640000 // width
generator = torch.Generator(device="cuda").manual_seed(int(seed))
height=int((height // 8) * 8)
width=int((width // 8) * 8)
# image_count += 1
curr_time = datetime.datetime.now()
is_clean = check_prompt(prompt)
print("----- advanced tab prompt ------------------------------")
print(f"prompt: {prompt}, size: {width}px x {height}px, guidance: {guidance}, steps: {steps}, seed: {int(seed)}")
# print(f"image_count: {image_count}, datetime: `{e}`")
print(f"datetime: `{curr_time}`")
print(f"is_prompt_clean: {is_clean}")
print("-------------------------------------------------------")
input_prompt = prompt.replace(">", "").replace("<", "")
input_prompt = input_prompt.split(" ")
tokens = []
prompt_words = []
for word in input_prompt:
if "ahx" in word:
tokens.append(word.replace("ahx-beta-", "").replace("ahx-model-", ""))
else:
prompt_words.append(word)
joined_prompt_text = f"\"{' '.join(prompt_words)}\""
file_name = f"ahx-{'-'.join(tokens)}-{seed}.png"
gallery_label = f"{joined_prompt_text} | {file_name}"
if is_clean:
return (
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=height, width=width, negative_prompt=negative_prompt).images[0],
f"{gallery_label}\n\nprompt: '{prompt}', seed = {int(seed)},\nheight: {height}px, width: {width}px,\nguidance: {guidance}, steps: {steps}, negative prompt: {negative_prompt}"
)
else:
return (
pipe(prompt="", guidance_scale=0, num_inference_steps=1, generator=generator, height=32, width=32).images[0],
f"Prompt violates Hugging Face's Terms of Service"
)
# New ArtBot image function -------------------------------------------------
# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width, negative_prompt=""):
# def artbot_image(prompt, guidance, steps, seed, height, width, negative_prompt=""):
def artbot_image():
guidance = 7.5
steps = 30
height = 768
width = 768
negative_prompt = ""
all_models = [token for token in TOKENS if 'ahx-' in token]
model_1 = random.choice(all_models)
model_2 = random.choice(all_models)
prompt = f"{model_1} {model_2}"
seed = random_seed()
square_pixels = height * width
if square_pixels > 640000:
height = 640000 // width
generator = torch.Generator(device="cuda").manual_seed(int(seed))
height=int((height // 8) * 8)
width=int((width // 8) * 8)
# image_count += 1
curr_time = datetime.datetime.now()
is_clean = check_prompt(prompt)
print("----- advanced tab prompt ------------------------------")
print(f"prompt: {prompt}, size: {width}px x {height}px, guidance: {guidance}, steps: {steps}, seed: {int(seed)}")
# print(f"image_count: {image_count}, datetime: `{e}`")
print(f"datetime: `{curr_time}`")
print(f"is_prompt_clean: {is_clean}")
print("-------------------------------------------------------")
if is_clean:
return (
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=height, width=width, negative_prompt=negative_prompt).images[0],
f"prompt: '{prompt}', seed = {int(seed)},\nheight: {height}px, width: {width}px,\nguidance: {guidance}, steps: {steps}, negative prompt: {negative_prompt}"
)
else:
return (
pipe(prompt="", guidance_scale=0, num_inference_steps=1, generator=generator, height=32, width=32).images[0],
f"Prompt violates Hugging Face's Terms of Service"
)
def default_guidance():
return 7.5
def default_steps():
return 30
def default_pixel():
return 768
def random_seed():
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615
def get_models_text():
# make markdown text for available models...
markdown_model_tags = [f"<{model}>" for model in model_tags if model != "ahx-model-1" and model != "ahx-model-2"]
markdown_model_text = "\n".join(markdown_model_tags)
# make markdown text for available betas...
markdown_betas_tags = [f"<{model}>" for model in model_tags if "beta" in model]
markdown_betas_text = "\n".join(markdown_model_tags)
return f"## Available Artist Models / Concepts:\n" + markdown_model_text + "\n\n## Available Beta Models / Concepts:\n" + markdown_betas_text
# ----- Advanced Tab -----------------------------------------------------------------
with gr.Blocks(css=".gradio-container {max-width: 650px}") as advanced_tab:
gr.Markdown('''
# <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> Advanced Prompting
Freely prompt artist models / concepts with open controls for size, inference steps, seed number etc. Text prompts need to manually include artist concept / model tokens which can be found in the welcome tab and beta tab (ie "an alien in the style of <ahx-model-12>"). You can also mix and match models (ie "a landscape in the style of <ahx-model-14> and <ahx-beta-4307f62>>"). To see example images or for more information see the links below.
<br><br>
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
<br>
<a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
<br>
''')
with gr.Row():
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
with gr.Row():
seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
negative_prompt = gr.Textbox(label="negative prompt (optional)", elem_id="input-text")
with gr.Row():
with gr.Column():
guidance = gr.Slider(0, 10, label="guidance", dtype=float, value=default_guidance, step=0.1, interactive=True)
with gr.Column():
steps = gr.Slider(1, 100, label="inference steps", dtype=int, value=default_steps, step=1, interactive=True)
with gr.Row():
with gr.Column():
width = gr.Slider(144, 4200, label="width", dtype=int, value=default_pixel, step=8, interactive=True)
with gr.Column():
height = gr.Slider(144, 4200, label="height", dtype=int, value=default_pixel, step=8, interactive=True)
gr.Markdown("<u>heads-up</u>: Height multiplied by width should not exceed about 645,000 or an error may occur. If an error occours refresh your browser tab or errors will continue. If you exceed this range the app will attempt to avoid an error by lowering your input height. We are actively seeking out ways to handle higher resolutions!")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
go_button.click(fn=image_prompt, inputs=[prompt, guidance, steps, seed, height, width, negative_prompt], outputs=[output, output_text])
gr.Markdown("For a complete list of usable models and beta concepts check out the dropdown selectors in the welcome and beta concepts tabs or the project's main website or our discord.\n\nhttp://www.astronaut.horse/concepts")
# -----------------------------------------------------------------------------------------------
model_tags = [model.modelId.split("/")[1] for model in ahx_model_list]
model_tags.sort()
import random
DROPDOWNS = {}
# set a default for empty entries...
DROPDOWNS[''] = ''
# populate the dropdowns with full appendable style strings...
for model in model_tags:
if model != "ahx-model-1" and model != "ahx-model-2":
DROPDOWNS[model] = f" in the style of <{model}>"
# set pipe param defaults...
def default_guidance():
return 7.5
def default_steps():
return 30
def default_pixel():
return 768
def random_seed():
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615
def simple_image_prompt(prompt, dropdown, size_dropdown):
seed = random_seed()
guidance = 7.5
if size_dropdown == 'landscape':
height = 624
width = 1024
elif size_dropdown == 'portrait':
height = 1024
width = 624
elif size_dropdown == 'square':
height = 768
width = 768
else:
height = 1024
width = 624
steps = 30
height=int((height // 8) * 8)
width=int((width // 8) * 8)
prompt = prompt + DROPDOWNS[dropdown]
generator = torch.Generator(device="cuda").manual_seed(int(seed))
curr_time = datetime.datetime.now()
is_clean = check_prompt(prompt)
print("----- welcome / beta tab prompt ------------------------------")
print(f"prompt: {prompt}, size: {width}px x {height}px, guidance: {guidance}, steps: {steps}, seed: {int(seed)}")
print(f"datetime: `{curr_time}`")
print(f"is_prompt_clean: {is_clean}")
print("-------------------------------------------------------")
if is_clean:
return (
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=height, width=width).images[0],
f"prompt: '{prompt}', seed = {int(seed)},\nheight: {height}px, width: {width}px,\nguidance: {guidance}, steps: {steps}"
)
else:
return (
pipe(prompt="", guidance_scale=0, num_inference_steps=1, generator=generator, height=32, width=32).images[0],
f"Prompt violates Hugging Face's Terms of Service"
)
# ----- Welcome Tab -----------------------------------------------------------------
rand_model_int = 2
with gr.Blocks(css=".gradio-container {max-width: 650px}") as new_welcome:
gr.Markdown('''
# <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> Stable Diffusion Artist Collaborations
Use the dropdown below to select models / concepts trained on images chosen by collaborating visual artists. Prompt concepts with any text. To see example images or for more information on the project see the main project page or the discord community linked below. The images you generate here are not recorded unless you save them, they belong to everyone and no one.
<br><br>
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
<br>
<a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
''')
with gr.Row():
dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-model' in dropdown], label="choose style...")
size_dropdown = gr.Dropdown(['square', 'portrait', 'landscape'], label="choose size...")
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown, size_dropdown], outputs=[output, output_text])
# Old Text --> This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally you can play around with more controls in the Advanced Prompting tab. <br> The images you generate here are not recorded unless you choose to share them. Please share any cool images / prompts on the community tab here or our discord server!
# ----- Beta Concepts -----------------------------------------------------------------
with gr.Blocks() as beta:
gr.Markdown('''
# <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> Beta Models / Concepts
This tool allows you to test out newly trained beta concepts trained by artists. To add your own beta concept see the link below. This uses free access to Google's GPUs but will require a password / key that you can get from the discord server. After a new concept / model is trained it will be automatically added to this tab when the app is redeployed.
<br><br>
<a href="https://colab.research.google.com/drive/1FhOpcEjHT7EN53Zv9MFLQTytZp11wjqg#scrollTo=hzUluHT-I42O">train your own beta model / concept</a>
<br>
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
<br>
<a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
<br>
''')
with gr.Row():
dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-beta' in dropdown], label="choose style...")
size_dropdown = gr.Dropdown(['square', 'portrait', 'landscape'], label="choose size...")
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown, size_dropdown], outputs=[output, output_text])
# ----- Artbot Tab -----------------------------------------------------------------
import random
with gr.Blocks(css=".gradio-container {max-width: 650px}") as artbot_1:
gr.Markdown('''
# <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> Astronaut Horse
''')
with gr.Accordion(label='project information...', open=False):
gr.Markdown('''
These images are collaborations between visual artists and Stable Diffusion, a free and open-source generative AI model fine-tuned on input artworks chosen by the artists. The images are generated in real time and cannot be reproduced unless you choose to save them.
<br><br>
The hardware resources to run this process have been generously provided at no cost by Hugging Face via a Community GPU Grant. For full control over all input parameters see the other tabs on this application. For more images and information on the project see the links below.
<br><br>
The images you generate here are not recorded unless you save them, they belong to everyone and no one.
<br><br>
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
<br>
<a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
''')
# with gr.Row():
# dropdown = gr.Dropdown([dropdown for dropdown in list(DROPDOWNS) if 'ahx-model' in dropdown], label="choose style...")
# size_dropdown = gr.Dropdown(['square', 'portrait', 'landscape'], label="choose size...")
# prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
with gr.Accordion(label='image information...', open=False):
output_text = gr.Text(elem_id="output-text")
# go_button.click(fn=simple_image_prompt, inputs=[prompt, dropdown, size_dropdown], outputs=[output, output_text])
go_button.click(fn=artbot_image, inputs=[], outputs=[output, output_text])
# ----- Canny Edge Tab -----------------------------------------------------------------
from PIL import Image
import gradio as gr
import numpy as np
import cv2
# Define a function to process the uploaded image
def canny_process_image(input_image, input_low_threshold, input_high_threshold, input_invert):
# Convert the input image to a NumPy array
np_image = np.array(input_image)
output_image = input_image # For example, just return the input image
numpy_image = np.array(output_image)
# Return the processed image
# low_threshold = 100
# high_threshold = 200
canny_1 = cv2.Canny(numpy_image, input_low_threshold, input_high_threshold)
canny_1 = canny_1[:, :, None]
canny_1 = np.concatenate([canny_1, canny_1, canny_1], axis=2)
if input_invert:
canny_1 = 255 - canny_1
canny_2 = Image.fromarray(canny_1)
return np.array(canny_2)
# Define the input and output interfaces
canny_input_image = gr.inputs.Image()
canny_input_low_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Lower Threshold:", default=100)
canny_input_high_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Upper Threshold:", default=200)
canny_input_invert = gr.inputs.Checkbox(label="Invert Image")
canny_outputs = gr.outputs.Image(type="numpy")
# Create the Gradio interface
canny_interface = gr.Interface(fn=canny_process_image, inputs=[canny_input_image, canny_input_low_threshold, canny_input_high_threshold, canny_input_invert], outputs=canny_outputs, title='Canny Edge Tracing', allow_flagging='never')
# ----- New ControlNet Canny Gradio Setup with Block -----------------------------------------------------------------
# !pip install -qq diffusers==0.14.0 transformers xformers git+https://github.com/huggingface/accelerate.git
# !pip install -qq opencv-contrib-python
# !pip install -qq controlnet_aux
# !pip install -qq opencv-python
# !pip install -qq gradio
# !pip install -qq Pillow
# !pip install -qq numpy
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
from diffusers import UniPCMultistepScheduler
from PIL import Image
import gradio as gr
import numpy as np
import torch
import cv2
controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
controlnet_pipe = StableDiffusionControlNetPipeline.from_pretrained(
"runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
)
controlnet_pipe.scheduler = UniPCMultistepScheduler.from_config(controlnet_pipe.scheduler.config)
controlnet_pipe.enable_model_cpu_offload()
def controlnet_edges(canny_input_prompt, input_image, input_low_threshold, input_high_threshold, input_invert, canny_input_seed, canny_input_rotate, canny_negative_prompt):
np_image = np.array(input_image)
output_image = input_image
numpy_image = np.array(output_image)
low_threshold = 80
high_threshold = 100
canny_1 = cv2.Canny(numpy_image, input_low_threshold, input_high_threshold)
canny_1 = canny_1[:, :, None]
canny_1 = np.concatenate([canny_1, canny_1, canny_1], axis=2)
if input_invert:
canny_1 = 255 - canny_1
canny_2 = Image.fromarray(canny_1)
canny_1 = Image.fromarray(canny_1)
if canny_input_rotate and int(canny_input_rotate) > 0:
canny_rotation = 360 - int(canny_input_rotate)
canny_2 = canny_2.rotate(canny_rotation, resample=Image.BICUBIC)
canny_1 = canny_1.rotate(canny_rotation, resample=Image.BICUBIC)
input_width, input_height = canny_2.size
limit_size = 768
# limit_size = 32
# resize image
if input_width > input_height:
new_width = min(input_width, limit_size)
new_height = int(new_width * input_height / input_width)
else:
new_height = min(input_height, limit_size)
new_width = int(new_height * input_width / input_height)
canny_2 = canny_2.resize((new_width, new_height))
canny_1 = canny_1.resize((new_width, new_height))
# resize original input image
input_resize = np.array(input_image)
input_resize = Image.fromarray(input_resize)
input_resize = input_resize.resize((new_width, new_height))
# make canny image now, after resize
canny_resize = np.array(input_resize)
canny_resize = cv2.Canny(canny_resize, input_low_threshold, input_high_threshold)
canny_resize = canny_resize[:, :, None]
canny_resize = np.concatenate([canny_resize, canny_resize, canny_resize], axis=2)
if input_invert:
canny_resize = 255 - canny_resize
canny_resize = Image.fromarray(canny_resize)
# rotate new resized canny image
if canny_input_rotate and int(canny_input_rotate) > 0:
canny_rotation = 360 - int(canny_input_rotate)
canny_resize = canny_resize.rotate(canny_rotation, resample=Image.BICUBIC, expand=True)
prompt = canny_input_prompt
generator = torch.Generator(device="cpu").manual_seed(canny_input_seed)
output_image = controlnet_pipe(
prompt,
canny_resize,
negative_prompt=canny_negative_prompt,
generator=generator,
num_inference_steps=20,
)
return [canny_resize, output_image[0][0]]
# return output_image[0][0]
import random
def random_seed():
return random.randint(0, 99999999999999)
with gr.Blocks() as canny_blocks_interface:
gr.Markdown('''
# <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> ControlNet + Canny Edge-Tracing
This tool allows you to apply a Stable Diffusion text prompt to an existing image composition using an edge-tracing tool called Canny Edge Detector. Note that you cannot currently apply trained artist concepts from the other tabs in this application to this process currently as they were trained using a more recent version of Stable Diffusion.
<br><br>
<a href="https://wikipedia.org/wiki/Canny_edge_detector">https://wikipedia.org/wiki/canny_edge_detector</a>
<br>
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
<br>
<a href="https://discord.gg/ZctfW4SvGw">https://discord.com</a><br>
<br>
''')
with gr.Row():
with gr.Column():
canny_input_prompt = gr.inputs.Textbox(label="enter your text prompt here")
with gr.Accordion(label='negative prompt (optional)', open=False):
canny_negative_prompt = gr.inputs.Textbox()
canny_input_low_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Lower Threshold:", default=100)
canny_input_high_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Upper Threshold:", default=120)
canny_input_seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
canny_input_invert = gr.inputs.Checkbox(label="invert edge tracing image")
canny_input_rotate = gr.Dropdown([0, 90, 180, 270], label="rotate image (for smartphones)")
with gr.Column():
canny_input_image = gr.inputs.Image(label="input image")
go_button = gr.Button('generate image')
# with gr.Row():
with gr.Accordion(label='traced edge image', open=False):
canny_output_1 = gr.outputs.Image(type="pil", label="traced edges")
with gr.Row():
canny_output_2 = gr.outputs.Image(type="pil", label="final image")
go_button.click(fn=controlnet_edges, inputs=[canny_input_prompt, canny_input_image, canny_input_low_threshold, canny_input_high_threshold, canny_input_invert, canny_input_seed, canny_input_rotate, canny_negative_prompt], outputs=[canny_output_1, canny_output_2])
# canny_blocks_interface.launch(debug=False)
# ----- Old ControlNet Canny Gradio Setup without Block (working) -----------------------------------------------------------------
# import gradio as gr
# from PIL import Image
# import numpy as np
# import cv2
# from diffusers import StableDiffusionControlNetPipeline, ControlNetModel
# from diffusers import UniPCMultistepScheduler
# import torch
# controlnet = ControlNetModel.from_pretrained("lllyasviel/sd-controlnet-canny", torch_dtype=torch.float16)
# controlnet_pipe = StableDiffusionControlNetPipeline.from_pretrained(
# "runwayml/stable-diffusion-v1-5", controlnet=controlnet, torch_dtype=torch.float16
# )
# controlnet_pipe.scheduler = UniPCMultistepScheduler.from_config(controlnet_pipe.scheduler.config)
# controlnet_pipe.enable_model_cpu_offload()
# controlnet_pipe.enable_xformers_memory_efficient_attention()
# def controlnet_edges(canny_input_prompt, input_image, input_low_threshold, input_high_threshold, input_invert):
# np_image = np.array(input_image)
# output_image = input_image
# numpy_image = np.array(output_image)
# low_threshold = 80
# high_threshold = 100
# canny_1 = cv2.Canny(numpy_image, input_low_threshold, input_high_threshold)
# canny_1 = canny_1[:, :, None]
# canny_1 = np.concatenate([canny_1, canny_1, canny_1], axis=2)
# if input_invert:
# canny_1 = 255 - canny_1
# canny_2 = Image.fromarray(canny_1)
# prompt = canny_input_prompt
# generator = torch.Generator(device="cpu").manual_seed(2)
# # output_image = controlnet_pipe(
# # prompt,
# # canny_2,
# # negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
# # generator=generator,
# # num_inference_steps=20,
# # )
# output_image = controlnet_pipe(
# prompt,
# canny_2,
# negative_prompt="monochrome, lowres, bad anatomy, worst quality, low quality",
# num_inference_steps=20,
# )
# return output_image[0][0]
# canny_input_prompt = gr.inputs.Textbox(label="Enter a single word or phrase")
# canny_input_image = gr.inputs.Image()
# canny_input_low_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Lower Threshold:", default=100)
# canny_input_high_threshold = gr.inputs.Slider(minimum=0, maximum=1000, step=1, label="Upper Threshold:", default=200)
# canny_input_invert = gr.inputs.Checkbox(label="Invert Image")
# canny_outputs = gr.outputs.Image(type="pil")
# make and launch the gradio app...
# controlnet_canny_interface = gr.Interface(fn=controlnet_edges, inputs=[canny_input_prompt, canny_input_image, canny_input_low_threshold, canny_input_high_threshold, canny_input_invert], outputs=canny_outputs, title='Canny Edge Tracing', allow_flagging='never')
# controlnet_canny_interface.launch()
# ----- Depth Map Tab -----------------------------------------------------------------
from diffusers import StableDiffusionControlNetPipeline, ControlNetModel, UniPCMultistepScheduler
from controlnet_aux import CannyDetector, ContentShuffleDetector, HEDdetector, LineartAnimeDetector, LineartDetector, MidasDetector, MLSDdetector, NormalBaeDetector, OpenposeDetector, PidiNetDetector
from PIL import Image, ImageChops, ImageOps
from diffusers.utils import load_image
from transformers import pipeline
import numpy as np
import requests
import torch
import cv2
def resize_image(image, max_dimension, multiplier=16):
original_width, original_height = image.size
aspect_ratio = original_width / original_height
if original_width > original_height:
new_width = min(max_dimension, original_width)
new_height = round(new_width / aspect_ratio)
else:
new_height = min(max_dimension, original_height)
new_width = round(new_height * aspect_ratio)
new_width = round(new_width / multiplier) * multiplier
new_height = round(new_height / multiplier) * multiplier
resized_image = image.resize((new_width, new_height), Image.LANCZOS)
return resized_image
def depth_map_prompt(prompt, image_url, controlnet_pipe, controlnet_model, negative_prompt):
image = load_image(image_url)
max_dimension = 768
resized_image = resize_image(image, max_dimension)
depth_map = controlnet_model(resized_image)
output = controlnet_pipe(
prompt,
depth_map,
negative_prompt=negative_prompt,
generator=torch.Generator(device="cpu").manual_seed(2),
num_inference_steps=20,
)
return {"output": output.images[0], "depth_map": depth_map}
controlnet_depth = ControlNetModel.from_pretrained(
"fusing/stable-diffusion-v1-5-controlnet-depth", torch_dtype=torch.float16
)
model_id = "runwayml/stable-diffusion-v1-5"
depth_pipe = StableDiffusionControlNetPipeline.from_pretrained(
model_id,
controlnet=controlnet_depth,
torch_dtype=torch.float16,
)
depth_pipe.scheduler = UniPCMultistepScheduler.from_config(depth_pipe.scheduler.config)
depth_pipe.enable_model_cpu_offload()
depth_pipe.enable_xformers_memory_efficient_attention()
loaded_model = MidasDetector.from_pretrained("lllyasviel/ControlNet") # works
def rotate_image(image, rotation):
rotation = 360 - int(rotation)
image = image.rotate(rotation, resample=Image.BICUBIC, expand=True)
return image
def controlnet_function(input_prompt, input_image, input_negative_prompt, input_seed, input_rotate, input_invert):
pil_image = Image.fromarray(input_image)
max_dimension = 768
processed_image = resize_image(pil_image, max_dimension, 32)
# rotate image
if input_rotate and int(input_rotate) > 0:
processed_image = rotate_image(processed_image, int(input_rotate))
depth_map = loaded_model(processed_image)
if input_invert:
depth_map = np.array(depth_map)
depth_map = 255 - depth_map
depth_map = Image.fromarray(depth_map)
generator = torch.Generator(device="cpu").manual_seed(input_seed)
output = depth_pipe(
input_prompt,
depth_map,
negative_prompt=input_negative_prompt,
generator=generator,
num_inference_steps=20,
)
return_text = f'''
prompt: "{input_prompt}"
seed: {input_seed}
negative-prompt: "{input_negative_prompt}"
controlnet: "fusing/stable-diffusion-v1-5-controlnet-depth"
stable-diffusion: "runwayml/stable-diffusion-v1-5"
inverted: {input_invert}
'''
return [return_text, output.images[0], depth_map]
# import random
def random_seed():
return random.randint(0, 99999999999999)
with gr.Blocks() as depth_controlnet_gradio:
gr.Markdown('''
# <span style="display: inline-block; height: 30px; width: 30px; margin-bottom: -3px; border-radius: 7px; background-size: 50px; background-position: center; background-image: url(http://www.astronaut.horse/thumbnail.jpg)"></span> ControlNet + Depthmap
---
''')
with gr.Row():
with gr.Column():
gr.Markdown('''
## Inputs...
''')
input_prompt = gr.inputs.Textbox(label="text prompt")
input_image = gr.inputs.Image(label="input image")
with gr.Accordion(label="options", open=False):
with gr.Row():
with gr.Column():
input_negative_prompt = gr.inputs.Textbox(label="negative prompt")
with gr.Column():
input_seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
with gr.Row():
with gr.Column():
input_rotate = gr.Dropdown([0, 90, 180, 270], label="rotate image (for smartphones)")
with gr.Column():
input_invert = gr.inputs.Checkbox(label="invert depthmap")
submit = gr.Button('generate image')
with gr.Column():
gr.Markdown('''
## Outputs...
''')
output_image = gr.Image(label="output image")
with gr.Accordion(label="depth map image", open=False):
depth_map = gr.Image(label="depth map")
output_text = gr.Textbox(label="output details")
submit.click(fn=controlnet_function, inputs=[input_prompt, input_image, input_negative_prompt, input_seed, input_rotate, input_invert], outputs=[output_text, output_image, depth_map])
# depth_controlnet_gradio.launch(debug=False)
# ----- Launch Tabs -----------------------------------------------------------------
tabbed_interface = gr.TabbedInterface([new_welcome, artbot_1, advanced_tab, beta, canny_blocks_interface, depth_controlnet_gradio], ["Welcome", "ArtBot", "Advanced", "Beta", "EdgeTrace", "DepthMap"])
# tabbed_interface = gr.TabbedInterface([new_welcome, advanced_tab, beta], ["Artbots", "Advanced", "Beta"])
tabbed_interface.launch() |