Spaces:
Runtime error
Runtime error
File size: 10,344 Bytes
a359b6d 3185c51 97cc1f0 a359b6d cd7f3ee a359b6d 6cf80c2 a359b6d 6cf80c2 a359b6d 5e22611 a359b6d 5e22611 a359b6d 5e22611 a359b6d 4a237f8 a359b6d 5e22611 a359b6d 97cc1f0 5e22611 a359b6d 5e22611 a359b6d 7e14edd a359b6d 7e14edd a359b6d 5e22611 a359b6d 5e22611 97cc1f0 a359b6d 6cf80c2 a359b6d 97cc1f0 a359b6d 97cc1f0 4ac359a 97cc1f0 871d7f6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 |
#@title Prepare the Concepts Library to be used
import requests
import os
import gradio as gr
import wget
import torch
from torch import autocast
from diffusers import StableDiffusionPipeline
from huggingface_hub import HfApi
from transformers import CLIPTextModel, CLIPTokenizer
import html
community_icon_html = ""
loading_icon_html = ""
share_js = ""
api = HfApi()
models_list = api.list_models(author="sd-concepts-library", sort="likes", direction=-1)
models = []
my_token = os.environ['api_key']
pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16, use_auth_token=my_token).to("cuda")
def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None):
loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu")
_old_token = token
# separate token and the embeds
trained_token = list(loaded_learned_embeds.keys())[0]
embeds = loaded_learned_embeds[trained_token]
# cast to dtype of text_encoder
dtype = text_encoder.get_input_embeddings().weight.dtype
# add the token in tokenizer
token = token if token is not None else trained_token
num_added_tokens = tokenizer.add_tokens(token)
i = 1
while(num_added_tokens == 0):
token = f"{token[:-1]}-{i}>"
num_added_tokens = tokenizer.add_tokens(token)
i+=1
# resize the token embeddings
text_encoder.resize_token_embeddings(len(tokenizer))
# get the id for the token and assign the embeds
token_id = tokenizer.convert_tokens_to_ids(token)
text_encoder.get_input_embeddings().weight.data[token_id] = embeds
return token
ahx_model_list = [model for model in models_list if "ahx" in model.modelId]
for model in ahx_model_list:
model_content = {}
model_id = model.modelId
model_content["id"] = model_id
embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin"
os.makedirs(model_id,exist_ok = True)
if not os.path.exists(f"{model_id}/learned_embeds.bin"):
try:
wget.download(embeds_url, out=model_id)
except:
continue
token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt"
response = requests.get(token_identifier)
token_name = response.text
concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt"
response = requests.get(concept_type)
concept_name = response.text
model_content["concept_type"] = concept_name
images = []
for i in range(4):
url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg"
image_download = requests.get(url)
url_code = image_download.status_code
if(url_code == 200):
file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image
file.write(image_download.content) ## Saves file content
file.close()
images.append(f"{model_id}/{i}.jpeg")
model_content["images"] = images
#if token cannot be loaded, skip it
try:
learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name)
except:
continue
model_content["token"] = learned_token
models.append(model_content)
models.append(model_content)
# -----------------------------------------------------------------------------------------------
#@title Dropdown Prompt Tab
model_tags = [model.modelId.split("/")[1] for model in ahx_model_list]
model_tags.sort()
import random
#@title Gradio Concept Loader
DROPDOWNS = {}
for model in model_tags:
if model != "ahx-model-1" and model != "ahx-model-2":
DROPDOWNS[model] = f" in the style of <{model}>"
# def image_prompt(prompt, dropdown, guidance, steps, seed, height, width):
def image_prompt(prompt, guidance, steps, seed, height, width):
# prompt = prompt + DROPDOWNS[dropdown]
generator = torch.Generator(device="cuda").manual_seed(int(seed))
return (
pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=int((height // 8) * 8), width=int((width // 8) * 8)).images[0],
f"prompt = '{prompt}'\nseed = {int(seed)}\nguidance_scale = {guidance}\ninference steps = {steps}\nheight = {int((height // 8) * 8)}\nwidth = {int((width // 8) * 8)}"
)
def default_guidance():
return 7.5
def default_steps():
return 30
def default_pixel():
return 768
def random_seed():
return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615
with gr.Blocks(css=".gradio-container {max-width: 650px}") as dropdown_tab:
# gr.Markdown("<u>styles</u>: check out examples of these at https://www.astronaut.horse/collaborations")
# dropdown = gr.Dropdown(list(DROPDOWNS), label="choose style...")
# gr.Markdown("<u>styles</u>: check out examples of these at https://www.astronaut.horse/collaborations")
with gr.Row():
prompt = gr.Textbox(label="image prompt...", elem_id="input-text")
with gr.Row():
seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1)
with gr.Row():
with gr.Column():
guidance = gr.Slider(0, 10, label="guidance", dtype=float, value=default_guidance, step=0.1, interactive=True)
with gr.Column():
steps = gr.Slider(1, 100, label="inference steps", dtype=int, value=default_steps, step=1, interactive=True)
with gr.Row():
with gr.Column():
height = gr.Slider(50, 3500, label="height", dtype=int, value=default_pixel, step=1, interactive=True)
with gr.Column():
width = gr.Slider(50, 3500, label="width", dtype=int, value=default_pixel, step=1, interactive=True)
gr.Markdown("<u>heads-up</u>: height multiplied by width should not exceed about 195,000 or an error will occur so don't go too nuts")
go_button = gr.Button("generate image", elem_id="go-button")
output = gr.Image(elem_id="output-image")
output_text = gr.Text(elem_id="output-text")
# go_button.click(fn=image_prompt, inputs=[prompt, dropdown, guidance, steps, seed, height, width], outputs=[output, output_text])
go_button.click(fn=image_prompt, inputs=[prompt, guidance, steps, seed, height, width], outputs=[output, output_text])
gr.Markdown('''
## Prompt Examples Using Artist Tokens:
* "an alien in the style of \<ahx-model-12>"
* "a painting in the style of \<ahx-model-11>"
* "a landscape in the style of \<ahx-model-10> and \<ahx-model-14> "
## Valid Artist Tokens:
* \<ahx-model-3>
* \<ahx-model-4>
* \<ahx-model-6>
* \<ahx-model-7>
* \<ahx-model-9>
* \<ahx-model-10>
* \<ahx-model-11>
* \<ahx-model-12>
* \<ahx-model-13>
* \<ahx-model-14>
''')
# -----------------------------------------------------------------------------------------------
SELECT_LABEL = "Select concept"
def assembleHTML(model):
return ''
def title_block(title, id):
return gr.Markdown(f"### [`{title}`](https://huggingface.co/{id})")
def image_block(image_list, concept_type):
return gr.Gallery(
label=concept_type, value=image_list, elem_id="gallery"
).style(grid=[2], height="auto")
def checkbox_block():
checkbox = gr.Checkbox(label=SELECT_LABEL).style(container=False)
return checkbox
def infer(text):
images_list = pipe(
[text],
num_inference_steps=50,
guidance_scale=7.5
)
return images_list.images, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True)
def infer_examples(text):
images_list = pipe(
[text],
num_inference_steps=50,
guidance_scale=7.5
)
return images_list.images
css = ""
examples = []
with gr.Blocks(css=css) as demo:
state = gr.Variable({
'selected': -1
})
state = {}
def update_state(i):
global checkbox_states
if(checkbox_states[i]):
checkbox_states[i] = False
state[i] = False
else:
state[i] = True
checkbox_states[i] = True
gr.Markdown('''
# π§βπ Astronaut Horse Concept Loader
This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally if you can play around with more controls in the Advanced Prompting tab. Enjoy!
<a href="http://www.astronaut.horse">http://www.astronaut.horse</a>
''')
with gr.Row():
with gr.Column():
# with gr.Box():
dropdown = gr.Dropdown(list(DROPDOWNS), label="choose style...")
with gr.Row(elem_id="prompt_area").style(mobile_collapse=False, equal_height=True):
text = gr.Textbox(
label="Enter your prompt", placeholder="Enter your prompt", show_label=False, max_lines=1, elem_id="prompt_input"
).style(
border=(True, False, True, True),
rounded=(True, False, False, True),
container=False,
)
btn = gr.Button("generate image",elem_id="run_btn").style(
margin=False,
rounded=(False, True, True, False),
)
# with gr.Row().style():
infer_outputs = gr.Gallery(show_label=False, elem_id="generated-gallery").style(grid=[1])
with gr.Row():
gr.HTML("<p></p>")
with gr.Row():
gr.Examples(examples=examples, fn=infer_examples, inputs=[text], outputs=infer_outputs, cache_examples=True)
with gr.Group(elem_id="share-btn-container"):
community_icon = gr.HTML(community_icon_html, visible=False)
loading_icon = gr.HTML(loading_icon_html, visible=False)
checkbox_states = {}
inputs = [text]
btn.click(
infer,
inputs=inputs,
outputs=[infer_outputs, community_icon, loading_icon]
)
# -----------------------------------------------------------------------------------------------
tabbed_interface = gr.TabbedInterface([demo.queue(max_size=20), dropdown_tab], ["Welcome!", "Advanced Prompting"])
tabbed_interface.launch() |