#@title Prepare the Concepts Library to be used import requests import os import gradio as gr import wget import torch from torch import autocast from diffusers import StableDiffusionPipeline from huggingface_hub import HfApi from transformers import CLIPTextModel, CLIPTokenizer import html community_icon_html = "" loading_icon_html = "" share_js = "" api = HfApi() models_list = api.list_models(author="sd-concepts-library", sort="likes", direction=-1) models = [] my_token = os.environ['api_key'] pipe = StableDiffusionPipeline.from_pretrained("stabilityai/stable-diffusion-2", revision="fp16", torch_dtype=torch.float16, use_auth_token=my_token).to("cuda") def load_learned_embed_in_clip(learned_embeds_path, text_encoder, tokenizer, token=None): loaded_learned_embeds = torch.load(learned_embeds_path, map_location="cpu") _old_token = token # separate token and the embeds trained_token = list(loaded_learned_embeds.keys())[0] embeds = loaded_learned_embeds[trained_token] # cast to dtype of text_encoder dtype = text_encoder.get_input_embeddings().weight.dtype # add the token in tokenizer token = token if token is not None else trained_token num_added_tokens = tokenizer.add_tokens(token) i = 1 while(num_added_tokens == 0): token = f"{token[:-1]}-{i}>" num_added_tokens = tokenizer.add_tokens(token) i+=1 # resize the token embeddings text_encoder.resize_token_embeddings(len(tokenizer)) # get the id for the token and assign the embeds token_id = tokenizer.convert_tokens_to_ids(token) text_encoder.get_input_embeddings().weight.data[token_id] = embeds return token ahx_model_list = [model for model in models_list if "ahx" in model.modelId] for model in ahx_model_list: model_content = {} model_id = model.modelId model_content["id"] = model_id embeds_url = f"https://huggingface.co/{model_id}/resolve/main/learned_embeds.bin" os.makedirs(model_id,exist_ok = True) if not os.path.exists(f"{model_id}/learned_embeds.bin"): try: wget.download(embeds_url, out=model_id) except: continue token_identifier = f"https://huggingface.co/{model_id}/raw/main/token_identifier.txt" response = requests.get(token_identifier) token_name = response.text concept_type = f"https://huggingface.co/{model_id}/raw/main/type_of_concept.txt" response = requests.get(concept_type) concept_name = response.text model_content["concept_type"] = concept_name images = [] for i in range(4): url = f"https://huggingface.co/{model_id}/resolve/main/concept_images/{i}.jpeg" image_download = requests.get(url) url_code = image_download.status_code if(url_code == 200): file = open(f"{model_id}/{i}.jpeg", "wb") ## Creates the file for image file.write(image_download.content) ## Saves file content file.close() images.append(f"{model_id}/{i}.jpeg") model_content["images"] = images #if token cannot be loaded, skip it try: learned_token = load_learned_embed_in_clip(f"{model_id}/learned_embeds.bin", pipe.text_encoder, pipe.tokenizer, token_name) except: continue model_content["token"] = learned_token models.append(model_content) models.append(model_content) # ----------------------------------------------------------------------------------------------- #@title Dropdown Prompt Tab model_tags = [model.modelId.split("/")[1] for model in ahx_model_list] model_tags.sort() import random #@title Gradio Concept Loader DROPDOWNS = {} for model in model_tags: if model != "ahx-model-1" and model != "ahx-model-2": DROPDOWNS[model] = f" in the style of <{model}>" # def image_prompt(prompt, dropdown, guidance, steps, seed, height, width): def image_prompt(prompt, guidance, steps, seed, height, width): # prompt = prompt + DROPDOWNS[dropdown] generator = torch.Generator(device="cuda").manual_seed(int(seed)) return ( pipe(prompt=prompt, guidance_scale=guidance, num_inference_steps=steps, generator=generator, height=int((height // 8) * 8), width=int((width // 8) * 8)).images[0], f"prompt = '{prompt}'\nseed = {int(seed)}\nguidance_scale = {guidance}\ninference steps = {steps}\nheight = {int((height // 8) * 8)}\nwidth = {int((width // 8) * 8)}" ) def default_guidance(): return 7.5 def default_steps(): return 30 def default_pixel(): return 768 def random_seed(): return random.randint(0, 99999999999999) # <-- this is a random gradio limit, the seed range seems to actually be 0-18446744073709551615 with gr.Blocks(css=".gradio-container {max-width: 650px}") as dropdown_tab: # gr.Markdown("styles: check out examples of these at https://www.astronaut.horse/collaborations") # dropdown = gr.Dropdown(list(DROPDOWNS), label="choose style...") # gr.Markdown("styles: check out examples of these at https://www.astronaut.horse/collaborations") with gr.Row(): prompt = gr.Textbox(label="image prompt...", elem_id="input-text") with gr.Row(): seed = gr.Slider(0, 99999999999999, label="seed", dtype=int, value=random_seed, interactive=True, step=1) with gr.Row(): with gr.Column(): guidance = gr.Slider(0, 10, label="guidance", dtype=float, value=default_guidance, step=0.1, interactive=True) with gr.Column(): steps = gr.Slider(1, 100, label="inference steps", dtype=int, value=default_steps, step=1, interactive=True) with gr.Row(): with gr.Column(): height = gr.Slider(50, 3500, label="height", dtype=int, value=default_pixel, step=1, interactive=True) with gr.Column(): width = gr.Slider(50, 3500, label="width", dtype=int, value=default_pixel, step=1, interactive=True) gr.Markdown("heads-up: height multiplied by width should not exceed about 195,000 or an error will occur so don't go too nuts") go_button = gr.Button("generate image", elem_id="go-button") output = gr.Image(elem_id="output-image") output_text = gr.Text(elem_id="output-text") # go_button.click(fn=image_prompt, inputs=[prompt, dropdown, guidance, steps, seed, height, width], outputs=[output, output_text]) go_button.click(fn=image_prompt, inputs=[prompt, guidance, steps, seed, height, width], outputs=[output, output_text]) gr.Markdown(''' ## Prompt Examples Using Artist Tokens: * "an alien in the style of \" * "a painting in the style of \" * "a landscape in the style of \ and \ " ## Valid Artist Tokens: * \ * \ * \ * \ * \ * \ * \ * \ * \ * \ ''') # ----------------------------------------------------------------------------------------------- SELECT_LABEL = "Select concept" def assembleHTML(model): return '' def title_block(title, id): return gr.Markdown(f"### [`{title}`](https://huggingface.co/{id})") def image_block(image_list, concept_type): return gr.Gallery( label=concept_type, value=image_list, elem_id="gallery" ).style(grid=[2], height="auto") def checkbox_block(): checkbox = gr.Checkbox(label=SELECT_LABEL).style(container=False) return checkbox def infer(text): images_list = pipe( [text], num_inference_steps=50, guidance_scale=7.5 ) return images_list.images, gr.update(visible=True), gr.update(visible=True), gr.update(visible=True) def infer_examples(text): images_list = pipe( [text], num_inference_steps=50, guidance_scale=7.5 ) return images_list.images css = "" examples = [] with gr.Blocks(css=css) as demo: state = gr.Variable({ 'selected': -1 }) state = {} def update_state(i): global checkbox_states if(checkbox_states[i]): checkbox_states[i] = False state[i] = False else: state[i] = True checkbox_states[i] = True gr.Markdown(''' # 🧑‍🚀 Astronaut Horse Concept Loader This tool allows you to run your own text prompts into fine-tuned artist concepts from an ongoing series of Stable Diffusion collaborations with visual artists linked below. Select an artist's fine-tuned concept / model from the dropdown and enter any desired text prompt. You can check out example output images and project details on the project's webpage. Additionally if you can play around with more controls in the Advanced Prompting tab. Enjoy! http://www.astronaut.horse ''') with gr.Row(): with gr.Column(): # with gr.Box(): dropdown = gr.Dropdown(list(DROPDOWNS), label="choose style...") with gr.Row(elem_id="prompt_area").style(mobile_collapse=False, equal_height=True): text = gr.Textbox( label="Enter your prompt", placeholder="Enter your prompt", show_label=False, max_lines=1, elem_id="prompt_input" ).style( border=(True, False, True, True), rounded=(True, False, False, True), container=False, ) btn = gr.Button("generate image",elem_id="run_btn").style( margin=False, rounded=(False, True, True, False), ) # with gr.Row().style(): infer_outputs = gr.Gallery(show_label=False, elem_id="generated-gallery").style(grid=[1]) with gr.Row(): gr.HTML("

") with gr.Row(): gr.Examples(examples=examples, fn=infer_examples, inputs=[text], outputs=infer_outputs, cache_examples=True) with gr.Group(elem_id="share-btn-container"): community_icon = gr.HTML(community_icon_html, visible=False) loading_icon = gr.HTML(loading_icon_html, visible=False) checkbox_states = {} inputs = [text] btn.click( infer, inputs=inputs, outputs=[infer_outputs, community_icon, loading_icon] ) # ----------------------------------------------------------------------------------------------- tabbed_interface = gr.TabbedInterface([demo.queue(max_size=20), dropdown_tab], ["Welcome!", "Advanced Prompting"]) tabbed_interface.launch()