Spaces:
Sleeping
Sleeping
File size: 7,887 Bytes
2f43921 a06e8a6 2f43921 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 |
import random
import numpy as np
import requests
from io import BytesIO
from PIL import Image
from statistics import mean
import copy
import json
from typing import Any, Mapping
import open_clip
import torch
from sentence_transformers.util import (semantic_search,
dot_score,
normalize_embeddings)
def read_json(filename: str) -> Mapping[str, Any]:
"""Returns a Python dict representation of JSON object at input file."""
with open(filename) as fp:
return json.load(fp)
def nn_project(curr_embeds, embedding_layer, print_hits=False):
with torch.no_grad():
bsz,seq_len,emb_dim = curr_embeds.shape
# Using the sentence transformers semantic search which is
# a dot product exact kNN search between a set of
# query vectors and a corpus of vectors
curr_embeds = curr_embeds.reshape((-1,emb_dim))
curr_embeds = normalize_embeddings(curr_embeds) # queries
embedding_matrix = embedding_layer.weight
embedding_matrix = normalize_embeddings(embedding_matrix)
hits = semantic_search(curr_embeds, embedding_matrix,
query_chunk_size=curr_embeds.shape[0],
top_k=1,
score_function=dot_score)
if print_hits:
all_hits = []
for hit in hits:
all_hits.append(hit[0]["score"])
print(f"mean hits:{mean(all_hits)}")
nn_indices = torch.tensor([hit[0]["corpus_id"] for hit in hits], device=curr_embeds.device)
nn_indices = nn_indices.reshape((bsz,seq_len))
projected_embeds = embedding_layer(nn_indices)
return projected_embeds, nn_indices
def set_random_seed(seed=0):
torch.manual_seed(seed + 0)
torch.cuda.manual_seed(seed + 1)
torch.cuda.manual_seed_all(seed + 2)
np.random.seed(seed + 3)
torch.cuda.manual_seed_all(seed + 4)
random.seed(seed + 5)
def decode_ids(input_ids, tokenizer, by_token=False):
input_ids = input_ids.detach().cpu().numpy()
texts = []
if by_token:
for input_ids_i in input_ids:
curr_text = []
for tmp in input_ids_i:
curr_text.append(tokenizer.decode([tmp]))
texts.append('|'.join(curr_text))
else:
for input_ids_i in input_ids:
texts.append(tokenizer.decode(input_ids_i))
return texts
def download_image(url):
try:
response = requests.get(url)
except:
return None
return Image.open(BytesIO(response.content)).convert("RGB")
def get_target_feature(model, preprocess, tokenizer_funct, device, target_images=None, target_prompts=None):
if target_images is not None:
with torch.no_grad():
curr_images = [preprocess(i).unsqueeze(0) for i in target_images]
curr_images = torch.concatenate(curr_images).to(device)
all_target_features = model.encode_image(curr_images)
else:
texts = tokenizer_funct(target_prompts).to(device)
all_target_features = model.encode_text(texts)
return all_target_features
def initialize_prompt(tokenizer, token_embedding, args, device):
prompt_len = args.prompt_len
# randomly optimize prompt embeddings
prompt_ids = torch.randint(len(tokenizer.encoder), (args.prompt_bs, prompt_len)).to(device)
prompt_embeds = token_embedding(prompt_ids).detach()
prompt_embeds.requires_grad = True
# initialize the template
template_text = "{}"
padded_template_text = template_text.format(" ".join(["<start_of_text>"] * prompt_len))
dummy_ids = tokenizer.encode(padded_template_text)
# -1 for optimized tokens
dummy_ids = [i if i != 49406 else -1 for i in dummy_ids]
dummy_ids = [49406] + dummy_ids + [49407]
dummy_ids += [0] * (77 - len(dummy_ids))
dummy_ids = torch.tensor([dummy_ids] * args.prompt_bs).to(device)
# for getting dummy embeds; -1 won't work for token_embedding
tmp_dummy_ids = copy.deepcopy(dummy_ids)
tmp_dummy_ids[tmp_dummy_ids == -1] = 0
dummy_embeds = token_embedding(tmp_dummy_ids).detach()
dummy_embeds.requires_grad = False
return prompt_embeds, dummy_embeds, dummy_ids
def optimize_prompt_loop(model, tokenizer, token_embedding, all_target_features, args, device):
opt_iters = args.iter
lr = args.lr
weight_decay = args.weight_decay
print_step = args.print_step
batch_size = args.batch_size
# initialize prompt
prompt_embeds, dummy_embeds, dummy_ids = initialize_prompt(tokenizer, token_embedding, args, device)
p_bs, p_len, p_dim = prompt_embeds.shape
# get optimizer
input_optimizer = torch.optim.AdamW([prompt_embeds], lr=lr, weight_decay=weight_decay)
best_sim = 0
best_text = ""
for step in range(opt_iters):
# randomly sample sample images and get features
if batch_size is None:
target_features = all_target_features
else:
curr_indx = torch.randperm(len(all_target_features))
target_features = all_target_features[curr_indx][0:batch_size]
universal_target_features = all_target_features
# forward projection
projected_embeds, nn_indices = nn_project(prompt_embeds, token_embedding, print_hits=False)
# get cosine similarity score with all target features
with torch.no_grad():
padded_embeds = dummy_embeds.detach().clone()
padded_embeds[dummy_ids == -1] = projected_embeds.reshape(-1, p_dim)
logits_per_image, _ = model.forward_text_embedding(padded_embeds, dummy_ids, universal_target_features)
scores_per_prompt = logits_per_image.mean(dim=0)
universal_cosim_score = scores_per_prompt.max().item()
best_indx = scores_per_prompt.argmax().item()
tmp_embeds = prompt_embeds.detach().clone()
tmp_embeds.data = projected_embeds.data
tmp_embeds.requires_grad = True
# padding
padded_embeds = dummy_embeds.detach().clone()
padded_embeds[dummy_ids == -1] = tmp_embeds.reshape(-1, p_dim)
logits_per_image, _ = model.forward_text_embedding(padded_embeds, dummy_ids, target_features)
cosim_scores = logits_per_image
loss = 1 - cosim_scores.mean()
prompt_embeds.grad, = torch.autograd.grad(loss, [tmp_embeds])
input_optimizer.step()
input_optimizer.zero_grad()
curr_lr = input_optimizer.param_groups[0]["lr"]
cosim_scores = cosim_scores.mean().item()
decoded_text = decode_ids(nn_indices, tokenizer)[best_indx]
if print_step is not None and (step % print_step == 0 or step == opt_iters-1):
print(f"step: {step}, lr: {curr_lr}, cosim: {universal_cosim_score:.3f}, text: {decoded_text}")
if best_sim < universal_cosim_score:
best_sim = universal_cosim_score
best_text = decoded_text
if print_step is not None:
print()
print(f"best cosine sim: {best_sim}")
print(f"best prompt: {best_text}")
return best_text
def optimize_prompt(model, preprocess, args, device, target_images=None, target_prompts=None):
token_embedding = model.token_embedding
tokenizer = open_clip.tokenizer._tokenizer
tokenizer_funct = open_clip.get_tokenizer(args.clip_model)
# get target features
all_target_features = get_target_feature(model, preprocess, tokenizer_funct, device, target_images=target_images, target_prompts=target_prompts)
# optimize prompt
learned_prompt = optimize_prompt_loop(model, tokenizer, token_embedding, all_target_features, args, device)
return learned_prompt
|