Spaces:
Running
on
Zero
Running
on
Zero
File size: 38,325 Bytes
4c19db8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 |
import spaces
import gradio as gr
import json
import logging
import torch
from PIL import Image
from diffusers import DiffusionPipeline
from diffusers import FluxControlNetPipeline, FluxControlNetModel, FluxMultiControlNetModel
from huggingface_hub import hf_hub_download, HfFileSystem, ModelCard, snapshot_download
import copy
import random
import time
from mod import (models, clear_cache, get_repo_safetensors, is_repo_name, is_repo_exists,
description_ui, num_loras, compose_lora_json, is_valid_lora, fuse_loras,
get_trigger_word, enhance_prompt, deselect_lora, num_cns, set_control_union_image,
get_control_union_mode, set_control_union_mode, get_control_params)
from flux import (search_civitai_lora, select_civitai_lora, search_civitai_lora_json,
download_my_lora, get_all_lora_tupled_list, apply_lora_prompt,
update_loras, get_t2i_model_info)
from tagger.tagger import predict_tags_wd, compose_prompt_to_copy
from tagger.fl2flux import predict_tags_fl2_flux
dtype = torch.bfloat16
#dtype = torch.float8_e4m3fn
# Initialize the base model
base_model = models[0]
controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union'
#controlnet_model_union_repo = 'InstantX/FLUX.1-dev-Controlnet-Union-alpha'
pipe = DiffusionPipeline.from_pretrained(base_model, torch_dtype=dtype)
controlnet_union = None
controlnet = None
last_model = models[0]
last_cn_on = False
# https://huggingface.co/InstantX/FLUX.1-dev-Controlnet-Union
# https://huggingface.co/spaces/jiuface/FLUX.1-dev-Controlnet-Union
def change_base_model(repo_id: str, cn_on: bool, progress=gr.Progress(track_tqdm=True)):
global pipe
global controlnet_union
global controlnet
global last_model
global last_cn_on
global dtype
try:
if (repo_id == last_model and cn_on is last_cn_on) or not is_repo_name(repo_id) or not is_repo_exists(repo_id): return gr.update(visible=True)
if cn_on:
#progress(0, desc=f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
print(f"Loading model: {repo_id} / Loading ControlNet: {controlnet_model_union_repo}")
clear_cache()
controlnet_union = FluxControlNetModel.from_pretrained(controlnet_model_union_repo, torch_dtype=dtype)
controlnet = FluxMultiControlNetModel([controlnet_union])
pipe = FluxControlNetPipeline.from_pretrained(repo_id, controlnet=controlnet, torch_dtype=dtype)
last_model = repo_id
last_cn_on = cn_on
#progress(1, desc=f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
print(f"Model loaded: {repo_id} / ControlNet Loaded: {controlnet_model_union_repo}")
else:
#progress(0, desc=f"Loading model: {repo_id}")
print(f"Loading model: {repo_id}")
clear_cache()
pipe = DiffusionPipeline.from_pretrained(repo_id, torch_dtype=dtype)
last_model = repo_id
last_cn_on = cn_on
#progress(1, desc=f"Model loaded: {repo_id}")
print(f"Model loaded: {repo_id}")
except Exception as e:
print(f"Model load Error: {e}")
raise gr.Error(f"Model load Error: {e}") from e
return gr.update(visible=True)
change_base_model.zerogpu = True
# Load LoRAs from JSON file
with open('loras.json', 'r') as f:
loras = json.load(f)
MAX_SEED = 2**32-1
class calculateDuration:
def __init__(self, activity_name=""):
self.activity_name = activity_name
def __enter__(self):
self.start_time = time.time()
return self
def __exit__(self, exc_type, exc_value, traceback):
self.end_time = time.time()
self.elapsed_time = self.end_time - self.start_time
if self.activity_name:
print(f"Elapsed time for {self.activity_name}: {self.elapsed_time:.6f} seconds")
else:
print(f"Elapsed time: {self.elapsed_time:.6f} seconds")
def update_selection(evt: gr.SelectData, width, height):
selected_lora = loras[evt.index]
new_placeholder = f"Type a prompt for {selected_lora['title']}"
lora_repo = selected_lora["repo"]
updated_text = f"### Selected: [{lora_repo}](https://huggingface.co/{lora_repo}) ✨"
if "aspect" in selected_lora:
if selected_lora["aspect"] == "portrait":
width = 768
height = 1024
elif selected_lora["aspect"] == "landscape":
width = 1024
height = 768
else:
width = 1024
height = 1024
return (
gr.update(placeholder=new_placeholder),
updated_text,
evt.index,
width,
height,
)
@spaces.GPU(duration=70)
def generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress=gr.Progress(track_tqdm=True)):
global pipe
global controlnet
global controlnet_union
try:
pipe.to("cuda")
generator = torch.Generator(device="cuda").manual_seed(seed)
with calculateDuration("Generating image"):
# Generate image
modes, images, scales = get_control_params()
if not cn_on or len(modes) == 0:
progress(0, desc="Start Inference.")
image = pipe(
prompt=prompt_mash,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
else:
progress(0, desc="Start Inference with ControlNet.")
if controlnet is not None: controlnet.to("cuda")
if controlnet_union is not None: controlnet_union.to("cuda")
image = pipe(
prompt=prompt_mash,
control_image=images,
control_mode=modes,
num_inference_steps=steps,
guidance_scale=cfg_scale,
width=width,
height=height,
controlnet_conditioning_scale=scales,
generator=generator,
joint_attention_kwargs={"scale": lora_scale},
).images[0]
except Exception as e:
print(e)
raise gr.Error(f"Inference Error {e}") from e
return image
def run_lora(prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
lora_scale, lora_json, cn_on, progress=gr.Progress(track_tqdm=True)):
global pipe
if selected_index is None and not is_valid_lora(lora_json):
gr.Info("LoRA isn't selected.")
# raise gr.Error("You must select a LoRA before proceeding.")
progress(0, desc="Preparing Inference.")
prompt_mash = prompt
if is_valid_lora(lora_json):
with calculateDuration("Loading LoRA weights"):
fuse_loras(pipe, lora_json)
trigger_word = get_trigger_word(lora_json)
prompt_mash = f"{prompt} {trigger_word}"
if selected_index is not None:
selected_lora = loras[selected_index]
lora_path = selected_lora["repo"]
trigger_word = selected_lora["trigger_word"]
if(trigger_word):
if "trigger_position" in selected_lora:
if selected_lora["trigger_position"] == "prepend":
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = f"{prompt} {trigger_word}"
else:
prompt_mash = f"{trigger_word} {prompt}"
else:
prompt_mash = prompt
# Load LoRA weights
with calculateDuration(f"Loading LoRA weights for {selected_lora['title']}"):
if "weights" in selected_lora:
pipe.load_lora_weights(lora_path, weight_name=selected_lora["weights"])
else:
pipe.load_lora_weights(lora_path)
# Set random seed for reproducibility
with calculateDuration("Randomizing seed"):
if randomize_seed:
seed = random.randint(0, MAX_SEED)
progress(0, desc="Running Inference.")
image = generate_image(prompt_mash, steps, seed, cfg_scale, width, height, lora_scale, cn_on, progress)
if is_valid_lora(lora_json):
pipe.unfuse_lora()
pipe.unload_lora_weights()
if selected_index is not None: pipe.unload_lora_weights()
pipe.to("cpu")
if controlnet is not None: controlnet.to("cpu")
if controlnet_union is not None: controlnet_union.to("cpu")
clear_cache()
return image, seed
def get_huggingface_safetensors(link):
split_link = link.split("/")
if(len(split_link) == 2):
model_card = ModelCard.load(link)
base_model = model_card.data.get("base_model")
print(base_model)
if((base_model != "black-forest-labs/FLUX.1-dev") and (base_model != "black-forest-labs/FLUX.1-schnell")):
raise Exception("Not a FLUX LoRA!")
image_path = model_card.data.get("widget", [{}])[0].get("output", {}).get("url", None)
trigger_word = model_card.data.get("instance_prompt", "")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_path}" if image_path else None
fs = HfFileSystem()
try:
list_of_files = fs.ls(link, detail=False)
for file in list_of_files:
if(file.endswith(".safetensors")):
safetensors_name = file.split("/")[-1]
if (not image_url and file.lower().endswith((".jpg", ".jpeg", ".png", ".webp"))):
image_elements = file.split("/")
image_url = f"https://huggingface.co/{link}/resolve/main/{image_elements[-1]}"
except Exception as e:
print(e)
gr.Warning(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
raise Exception(f"You didn't include a link neither a valid Hugging Face repository with a *.safetensors LoRA")
return split_link[1], link, safetensors_name, trigger_word, image_url
def check_custom_model(link):
if(link.startswith("https://")):
if(link.startswith("https://huggingface.co") or link.startswith("https://www.huggingface.co")):
link_split = link.split("huggingface.co/")
return get_huggingface_safetensors(link_split[1])
else:
return get_huggingface_safetensors(link)
def add_custom_lora(custom_lora):
global loras
if(custom_lora):
try:
title, repo, path, trigger_word, image = check_custom_model(custom_lora)
print(f"Loaded custom LoRA: {repo}")
card = f'''
<div class="custom_lora_card">
<span>Loaded custom LoRA:</span>
<div class="card_internal">
<img src="{image}" />
<div>
<h3>{title}</h3>
<small>{"Using: <code><b>"+trigger_word+"</code></b> as the trigger word" if trigger_word else "No trigger word found. If there's a trigger word, include it in your prompt"}<br></small>
</div>
</div>
</div>
'''
existing_item_index = next((index for (index, item) in enumerate(loras) if item['repo'] == repo), None)
if(not existing_item_index):
new_item = {
"image": image,
"title": title,
"repo": repo,
"weights": path,
"trigger_word": trigger_word
}
print(new_item)
existing_item_index = len(loras)
loras.append(new_item)
return gr.update(visible=True, value=card), gr.update(visible=True), gr.Gallery(selected_index=None), f"Custom: {path}", existing_item_index, trigger_word
except Exception as e:
gr.Warning(f"Invalid LoRA: either you entered an invalid link, or a non-FLUX LoRA")
return gr.update(visible=True, value=f"Invalid LoRA: either you entered an invalid link, a non-FLUX LoRA"), gr.update(visible=True), gr.update(), "", None, ""
else:
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
def remove_custom_lora():
return gr.update(visible=False), gr.update(visible=False), gr.update(), "", None, ""
run_lora.zerogpu = True
css = '''
#gen_btn{height: 100%}
#title{text-align: center}
#title h1{font-size: 3em; display:inline-flex; align-items:center}
#title img{width: 100px; margin-right: 0.5em}
#gallery .grid-wrap{height: 10vh}
#lora_list{background: var(--block-background-fill);padding: 0 1em .3em; font-size: 90%}
.card_internal{display: flex;height: 100px;margin-top: .5em}
.card_internal img{margin-right: 1em}
.styler{--form-gap-width: 0px !important}
#progress{height:30px}
#progress .generating{display:none}
.progress-container {width: 100%;height: 30px;background-color: #f0f0f0;border-radius: 15px;overflow: hidden;margin-bottom: 20px}
.progress-bar {height: 100%;background-color: #4f46e5;width: calc(var(--current) / var(--total) * 100%);transition: width 0.5s ease-in-out}
#model-info {text-align: center; !important}
'''
with gr.Blocks(theme='Nymbo/Nymbo_Theme', fill_width=True, css=css, delete_cache=(60, 3600)) as app:
with gr.Tab("FLUX LoRA the Explorer"):
title = gr.HTML(
"""<h1><img src="https://huggingface.co/spaces/multimodalart/flux-lora-the-explorer/resolve/main/flux_lora.png" alt="LoRA">FLUX LoRA the Explorer Mod</h1>""",
elem_id="title",
)
selected_index = gr.State(None)
with gr.Row():
with gr.Column(scale=3):
with gr.Group():
with gr.Accordion("Generate Prompt from Image", open=False):
tagger_image = gr.Image(label="Input image", type="pil", sources=["upload", "clipboard"], height=256)
with gr.Accordion(label="Advanced options", open=False):
tagger_general_threshold = gr.Slider(label="Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.01, interactive=True)
tagger_character_threshold = gr.Slider(label="Character threshold", minimum=0.0, maximum=1.0, value=0.8, step=0.01, interactive=True)
neg_prompt = gr.Text(label="Negative Prompt", lines=1, max_lines=8, placeholder="", visible=False)
v2_character = gr.Textbox(label="Character", placeholder="hatsune miku", scale=2, visible=False)
v2_series = gr.Textbox(label="Series", placeholder="vocaloid", scale=2, visible=False)
v2_copy = gr.Button(value="Copy to clipboard", size="sm", interactive=False, visible=False)
tagger_algorithms = gr.CheckboxGroup(["Use WD Tagger", "Use Florence-2-Flux"], label="Algorithms", value=["Use WD Tagger"])
tagger_generate_from_image = gr.Button(value="Generate Prompt from Image")
prompt = gr.Textbox(label="Prompt", lines=1, max_lines=8, placeholder="Type a prompt")
prompt_enhance = gr.Button(value="Enhance your prompt", variant="secondary")
with gr.Column(scale=1, elem_id="gen_column"):
generate_button = gr.Button("Generate", variant="primary", elem_id="gen_btn")
with gr.Row():
with gr.Column():
selected_info = gr.Markdown("")
gallery = gr.Gallery(
[(item["image"], item["title"]) for item in loras],
label="LoRA Gallery",
allow_preview=False,
columns=3,
elem_id="gallery"
)
with gr.Group():
custom_lora = gr.Textbox(label="Custom LoRA", info="LoRA Hugging Face path", placeholder="multimodalart/vintage-ads-flux")
gr.Markdown("[Check the list of FLUX LoRas](https://huggingface.co/models?other=base_model:adapter:black-forest-labs/FLUX.1-dev)", elem_id="lora_list")
custom_lora_info = gr.HTML(visible=False)
custom_lora_button = gr.Button("Remove custom LoRA", visible=False)
deselect_lora_button = gr.Button("Deselect LoRA", variant="secondary")
with gr.Column():
result = gr.Image(label="Generated Image", format="png", show_share_button=False)
with gr.Group():
model_name = gr.Dropdown(label="Base Model", info="You can enter a huggingface model repo_id to want to use.", choices=models, value=models[0], allow_custom_value=True)
model_info = gr.Markdown(elem_id="model-info")
with gr.Row():
with gr.Accordion("Advanced Settings", open=False):
with gr.Column():
with gr.Row():
cfg_scale = gr.Slider(label="CFG Scale", minimum=1, maximum=20, step=0.5, value=3.5)
steps = gr.Slider(label="Steps", minimum=1, maximum=50, step=1, value=28)
with gr.Row():
width = gr.Slider(label="Width", minimum=256, maximum=1536, step=64, value=1024)
height = gr.Slider(label="Height", minimum=256, maximum=1536, step=64, value=1024)
with gr.Row():
randomize_seed = gr.Checkbox(True, label="Randomize seed")
seed = gr.Slider(label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, randomize=True)
lora_scale = gr.Slider(label="LoRA Scale", minimum=-3, maximum=3, step=0.01, value=0.95)
with gr.Accordion("External LoRA", open=True):
with gr.Column():
lora_repo_json = gr.JSON(value=[{}] * num_loras, visible=False)
lora_repo = [None] * num_loras
lora_weights = [None] * num_loras
lora_trigger = [None] * num_loras
lora_wt = [None] * num_loras
lora_info = [None] * num_loras
lora_copy = [None] * num_loras
lora_md = [None] * num_loras
lora_num = [None] * num_loras
with gr.Row():
for i in range(num_loras):
with gr.Column():
lora_repo[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Repo", choices=get_all_lora_tupled_list(), info="Input LoRA Repo ID", value="", allow_custom_value=True)
with gr.Row():
lora_weights[i] = gr.Dropdown(label=f"LoRA {int(i+1)} Filename", choices=[], info="Optional", value="", allow_custom_value=True)
lora_trigger[i] = gr.Textbox(label=f"LoRA {int(i+1)} Trigger Prompt", lines=1, max_lines=4, value="")
lora_wt[i] = gr.Slider(label=f"LoRA {int(i+1)} Scale", minimum=-3, maximum=3, step=0.01, value=1.00)
with gr.Row():
lora_info[i] = gr.Textbox(label="", info="Example of prompt:", value="", show_copy_button=True, interactive=False, visible=False)
lora_copy[i] = gr.Button(value="Copy example to prompt", visible=False)
lora_md[i] = gr.Markdown(value="", visible=False)
lora_num[i] = gr.Number(i, visible=False)
with gr.Accordion("From URL", open=True, visible=True):
with gr.Row():
lora_search_civitai_query = gr.Textbox(label="Query", placeholder="flux", lines=1)
lora_search_civitai_submit = gr.Button("Search on Civitai")
lora_search_civitai_basemodel = gr.CheckboxGroup(label="Search LoRA for", choices=["Flux.1 D", "Flux.1 S"], value=["Flux.1 D", "Flux.1 S"])
with gr.Row():
lora_search_civitai_json = gr.JSON(value={}, visible=False)
lora_search_civitai_desc = gr.Markdown(value="", visible=False)
lora_search_civitai_result = gr.Dropdown(label="Search Results", choices=[("", "")], value="", allow_custom_value=True, visible=False)
lora_download_url = gr.Textbox(label="URL", placeholder="http://...my_lora_url.safetensors", lines=1)
with gr.Row():
lora_download = [None] * num_loras
for i in range(num_loras):
lora_download[i] = gr.Button(f"Get and set LoRA to {int(i+1)}")
with gr.Accordion("ControlNet (🚧Under construction...🚧)", open=False, visible=False):
with gr.Column():
cn_on = gr.Checkbox(False, label="Use ControlNet")
cn_mode = [None] * num_cns
cn_scale = [None] * num_cns
cn_image = [None] * num_cns
cn_image_ref = [None] * num_cns
cn_res = [None] * num_cns
cn_num = [None] * num_cns
with gr.Row():
for i in range(num_cns):
with gr.Column():
with gr.Row():
cn_mode[i] = gr.Dropdown(label=f"ControlNet {int(i+1)} Mode", choices=get_control_union_mode(), value=get_control_union_mode()[0], allow_custom_value=False)
cn_scale[i] = gr.Slider(label=f"ControlNet {int(i+1)} Weight", minimum=0.0, maximum=1.0, step=0.01, value=0.75)
cn_res[i] = gr.Slider(label=f"ControlNet {int(i+1)} Preprocess resolution", minimum=128, maximum=512, value=384, step=1)
cn_num[i] = gr.Number(i, visible=False)
with gr.Row():
cn_image_ref[i] = gr.Image(label="Image Reference", type="pil", format="png", height=256, sources=["upload", "clipboard"], show_share_button=False)
cn_image[i] = gr.Image(label="Control Image", type="pil", format="png", height=256, show_share_button=False, interactive=False)
gallery.select(
update_selection,
inputs=[width, height],
outputs=[prompt, selected_info, selected_index, width, height],
queue=False,
show_api=False,
)
custom_lora.input(
add_custom_lora,
inputs=[custom_lora],
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, prompt],
queue=False,
show_api=False,
)
custom_lora_button.click(
remove_custom_lora,
outputs=[custom_lora_info, custom_lora_button, gallery, selected_info, selected_index, custom_lora],
queue=False,
show_api=False,
)
gr.on(
triggers=[generate_button.click, prompt.submit],
fn=change_base_model,
inputs=[model_name, cn_on],
outputs=[result],
queue=True,
show_api=False,
trigger_mode="once",
).success(
fn=run_lora,
inputs=[prompt, cfg_scale, steps, selected_index, randomize_seed, seed, width, height,
lora_scale, lora_repo_json, cn_on],
outputs=[result, seed],
queue=True,
show_api=True,
)
deselect_lora_button.click(deselect_lora, None, [prompt, selected_info, selected_index, width, height], queue=False, show_api=False)
"""gr.on(
triggers=[model_name.change, cn_on.change],
fn=change_base_model,
inputs=[model_name, cn_on],
outputs=[result],
queue=True,
show_api=False,
trigger_mode="once",
).then(get_t2i_model_info, [model_name], [model_info], queue=True, show_api=False)"""
gr.on(
triggers=[model_name.change, cn_on.change],
fn=get_t2i_model_info,
inputs=[model_name],
outputs=[model_info],
queue=False,
show_api=False,
trigger_mode="once",
).then(change_base_model, [model_name, cn_on], [result], queue=True, show_api=False)
prompt_enhance.click(enhance_prompt, [prompt], [prompt], queue=False, show_api=False)
gr.on(
triggers=[lora_search_civitai_submit.click, lora_search_civitai_query.submit],
fn=search_civitai_lora,
inputs=[lora_search_civitai_query, lora_search_civitai_basemodel],
outputs=[lora_search_civitai_result, lora_search_civitai_desc, lora_search_civitai_submit, lora_search_civitai_query],
scroll_to_output=True,
queue=True,
show_api=False,
)
lora_search_civitai_json.change(search_civitai_lora_json, [lora_search_civitai_query, lora_search_civitai_basemodel], [lora_search_civitai_json], queue=True, show_api=True) # fn for api
lora_search_civitai_result.change(select_civitai_lora, [lora_search_civitai_result], [lora_download_url, lora_search_civitai_desc], scroll_to_output=True, queue=False, show_api=False)
for i, l in enumerate(lora_repo):
deselect_lora_button.click(lambda: ("", 1.0), None, [lora_repo[i], lora_wt[i]], queue=False, show_api=False)
gr.on(
triggers=[lora_download[i].click],
fn=download_my_lora,
inputs=[lora_download_url, lora_repo[i]],
outputs=[lora_repo[i]],
scroll_to_output=True,
queue=True,
show_api=False,
)
gr.on(
triggers=[lora_repo[i].change, lora_wt[i].change],
fn=update_loras,
inputs=[prompt, lora_repo[i], lora_wt[i]],
outputs=[prompt, lora_repo[i], lora_wt[i], lora_info[i], lora_md[i]],
queue=False,
trigger_mode="once",
show_api=False,
).success(get_repo_safetensors, [lora_repo[i]], [lora_weights[i]], queue=False, show_api=False
).success(apply_lora_prompt, [lora_info[i]], [lora_trigger[i]], queue=False, show_api=False
).success(compose_lora_json, [lora_repo_json, lora_num[i], lora_repo[i], lora_wt[i], lora_weights[i], lora_trigger[i]], [lora_repo_json], queue=False, show_api=False)
for i, m in enumerate(cn_mode):
gr.on(
triggers=[cn_mode[i].change, cn_scale[i].change],
fn=set_control_union_mode,
inputs=[cn_num[i], cn_mode[i], cn_scale[i]],
outputs=[cn_on],
queue=True,
show_api=False,
).success(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)
cn_image_ref[i].upload(set_control_union_image, [cn_num[i], cn_mode[i], cn_image_ref[i], height, width, cn_res[i]], [cn_image[i]], queue=False, show_api=False)
tagger_generate_from_image.click(lambda: ("", "", ""), None, [v2_series, v2_character, prompt], queue=False, show_api=False,
).success(
predict_tags_wd,
[tagger_image, prompt, tagger_algorithms, tagger_general_threshold, tagger_character_threshold],
[v2_series, v2_character, prompt, v2_copy],
show_api=False,
).success(predict_tags_fl2_flux, [tagger_image, prompt, tagger_algorithms], [prompt], show_api=False,
).success(compose_prompt_to_copy, [v2_character, v2_series, prompt], [prompt], queue=False, show_api=False)
with gr.Tab("FLUX Prompt Generator"):
from prompt import (PromptGenerator, HuggingFaceInferenceNode, florence_caption,
ARTFORM, PHOTO_TYPE, ROLES, HAIRSTYLES, LIGHTING, COMPOSITION, POSE, BACKGROUND,
PHOTOGRAPHY_STYLES, DEVICE, PHOTOGRAPHER, ARTIST, DIGITAL_ARTFORM, PLACE,
FEMALE_DEFAULT_TAGS, MALE_DEFAULT_TAGS, FEMALE_BODY_TYPES, MALE_BODY_TYPES,
FEMALE_CLOTHING, MALE_CLOTHING, FEMALE_ADDITIONAL_DETAILS, MALE_ADDITIONAL_DETAILS, pg_title)
prompt_generator = PromptGenerator()
huggingface_node = HuggingFaceInferenceNode()
gr.HTML(pg_title)
with gr.Row():
with gr.Column(scale=2):
with gr.Accordion("Basic Settings"):
pg_custom = gr.Textbox(label="Custom Input Prompt (optional)")
pg_subject = gr.Textbox(label="Subject (optional)")
pg_gender = gr.Radio(["female", "male"], label="Gender", value="female")
# Add the radio button for global option selection
pg_global_option = gr.Radio(
["Disabled", "Random", "No Figure Rand"],
label="Set all options to:",
value="Disabled"
)
with gr.Accordion("Artform and Photo Type", open=False):
pg_artform = gr.Dropdown(["disabled", "random"] + ARTFORM, label="Artform", value="disabled")
pg_photo_type = gr.Dropdown(["disabled", "random"] + PHOTO_TYPE, label="Photo Type", value="disabled")
with gr.Accordion("Character Details", open=False):
pg_body_types = gr.Dropdown(["disabled", "random"] + FEMALE_BODY_TYPES + MALE_BODY_TYPES, label="Body Types", value="disabled")
pg_default_tags = gr.Dropdown(["disabled", "random"] + FEMALE_DEFAULT_TAGS + MALE_DEFAULT_TAGS, label="Default Tags", value="disabled")
pg_roles = gr.Dropdown(["disabled", "random"] + ROLES, label="Roles", value="disabled")
pg_hairstyles = gr.Dropdown(["disabled", "random"] + HAIRSTYLES, label="Hairstyles", value="disabled")
pg_clothing = gr.Dropdown(["disabled", "random"] + FEMALE_CLOTHING + MALE_CLOTHING, label="Clothing", value="disabled")
with gr.Accordion("Scene Details", open=False):
pg_place = gr.Dropdown(["disabled", "random"] + PLACE, label="Place", value="disabled")
pg_lighting = gr.Dropdown(["disabled", "random"] + LIGHTING, label="Lighting", value="disabled")
pg_composition = gr.Dropdown(["disabled", "random"] + COMPOSITION, label="Composition", value="disabled")
pg_pose = gr.Dropdown(["disabled", "random"] + POSE, label="Pose", value="disabled")
pg_background = gr.Dropdown(["disabled", "random"] + BACKGROUND, label="Background", value="disabled")
with gr.Accordion("Style and Artist", open=False):
pg_additional_details = gr.Dropdown(["disabled", "random"] + FEMALE_ADDITIONAL_DETAILS + MALE_ADDITIONAL_DETAILS, label="Additional Details", value="disabled")
pg_photography_styles = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHY_STYLES, label="Photography Styles", value="disabled")
pg_device = gr.Dropdown(["disabled", "random"] + DEVICE, label="Device", value="disabled")
pg_photographer = gr.Dropdown(["disabled", "random"] + PHOTOGRAPHER, label="Photographer", value="disabled")
pg_artist = gr.Dropdown(["disabled", "random"] + ARTIST, label="Artist", value="disabled")
pg_digital_artform = gr.Dropdown(["disabled", "random"] + DIGITAL_ARTFORM, label="Digital Artform", value="disabled")
pg_generate_button = gr.Button("Generate Prompt")
with gr.Column(scale=2):
with gr.Accordion("Image and Caption", open=False):
pg_input_image = gr.Image(label="Input Image (optional)")
pg_caption_output = gr.Textbox(label="Generated Caption", lines=3)
pg_create_caption_button = gr.Button("Create Caption")
pg_add_caption_button = gr.Button("Add Caption to Prompt")
with gr.Accordion("Prompt Generation", open=True):
pg_output = gr.Textbox(label="Generated Prompt / Input Text", lines=4)
pg_t5xxl_output = gr.Textbox(label="T5XXL Output", visible=True)
pg_clip_l_output = gr.Textbox(label="CLIP L Output", visible=True)
pg_clip_g_output = gr.Textbox(label="CLIP G Output", visible=True)
with gr.Column(scale=2):
with gr.Accordion("Prompt Generation with LLM", open=False):
pg_happy_talk = gr.Checkbox(label="Happy Talk", value=True)
pg_compress = gr.Checkbox(label="Compress", value=True)
pg_compression_level = gr.Radio(["soft", "medium", "hard"], label="Compression Level", value="hard")
pg_poster = gr.Checkbox(label="Poster", value=False)
pg_custom_base_prompt = gr.Textbox(label="Custom Base Prompt", lines=5)
pg_generate_text_button = gr.Button("Generate Prompt with LLM (Llama 3.1 70B)")
pg_text_output = gr.Textbox(label="Generated Text", lines=10)
description_ui()
def create_caption(image):
if image is not None:
return florence_caption(image)
return ""
pg_create_caption_button.click(
create_caption,
inputs=[pg_input_image],
outputs=[pg_caption_output]
)
def generate_prompt_with_dynamic_seed(*args):
# Generate a new random seed
dynamic_seed = random.randint(0, 1000000)
# Call the generate_prompt function with the dynamic seed
result = prompt_generator.generate_prompt(dynamic_seed, *args)
# Return the result along with the used seed
return [dynamic_seed] + list(result)
pg_generate_button.click(
generate_prompt_with_dynamic_seed,
inputs=[pg_custom, pg_subject, pg_gender, pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles,
pg_additional_details, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform,
pg_place, pg_lighting, pg_clothing, pg_composition, pg_pose, pg_background, pg_input_image],
outputs=[gr.Number(label="Used Seed", visible=False), pg_output, gr.Number(visible=False), pg_t5xxl_output, pg_clip_l_output, pg_clip_g_output]
) #
pg_add_caption_button.click(
prompt_generator.add_caption_to_prompt,
inputs=[pg_output, pg_caption_output],
outputs=[pg_output]
)
pg_generate_text_button.click(
huggingface_node.generate,
inputs=[pg_output, pg_happy_talk, pg_compress, pg_compression_level, pg_poster, pg_custom_base_prompt],
outputs=pg_text_output
)
def update_all_options(choice):
updates = {}
if choice == "Disabled":
for dropdown in [
pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
]:
updates[dropdown] = gr.update(value="disabled")
elif choice == "Random":
for dropdown in [
pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
]:
updates[dropdown] = gr.update(value="random")
else: # No Figure Random
for dropdown in [pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing, pg_pose, pg_additional_details]:
updates[dropdown] = gr.update(value="disabled")
for dropdown in [pg_artform, pg_place, pg_lighting, pg_composition, pg_background, pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform]:
updates[dropdown] = gr.update(value="random")
return updates
pg_global_option.change(
update_all_options,
inputs=[pg_global_option],
outputs=[
pg_artform, pg_photo_type, pg_body_types, pg_default_tags, pg_roles, pg_hairstyles, pg_clothing,
pg_place, pg_lighting, pg_composition, pg_pose, pg_background, pg_additional_details,
pg_photography_styles, pg_device, pg_photographer, pg_artist, pg_digital_artform
]
)
app.queue()
app.launch() |