|
import requests |
|
import gradio as gr |
|
import pandas as pd |
|
from PIL import Image, ImageDraw |
|
|
|
def infer(im): |
|
im.save('converted.png') |
|
url = 'https://ajax.thehive.ai/api/demo/classify?endpoint=text_recognition' |
|
files = { |
|
'image': ('converted.png', open('converted.png', 'rb'), 'image/png'), |
|
'model_type': (None, 'detection'), |
|
'media_type': (None, 'photo'), |
|
} |
|
res = requests.post(url, files=files).json() |
|
img = im.convert('RGB') |
|
|
|
words = [] |
|
draw = ImageDraw.Draw(img,'RGBA') |
|
for output in res['response']['output']: |
|
for poly in output['bounding_poly']: |
|
words += [c['class'] for c in poly['classes']] |
|
draw.rectangle((poly['dimensions']['left']-2,poly['dimensions']['top']-2,poly['dimensions']['right']+2,poly['dimensions']['bottom']+2), outline=(0,255,0,255), fill=(0,255,0,50),width=2) |
|
|
|
img.save('result.png') |
|
return 'result.png', '\n'.join([o['block_text'] for o in res['response']['output']]), pd.DataFrame(words) |
|
|
|
iface = gr.Interface( |
|
fn=infer, |
|
title="Hive OCR", |
|
description="Demo for Hive OCR.Transcribe and analyze media depicting typed, written, or graphic text", |
|
inputs=[gr.inputs.Image(label='image', type='pil')], |
|
outputs=['image', 'text', gr.outputs.Dataframe(headers=['word'])], |
|
examples=[], |
|
article="<a href=\"https://thehive.ai/hive-ocr-solutions\">Hive OCR</a>", |
|
).launch() |