File size: 5,845 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
# Copyright (c) OpenMMLab. All rights reserved.
import os.path as osp
import tempfile
from functools import partial

import numpy as np
import pytest
import torch
from mmdet.core import BitmapMasks

from mmocr.models.textrecog.recognizer import (EncodeDecodeRecognizer,
                                               SegRecognizer)


def _create_dummy_dict_file(dict_file):
    chars = list('helowrd')
    with open(dict_file, 'w') as fw:
        for char in chars:
            fw.write(char + '\n')


def test_base_recognizer():
    tmp_dir = tempfile.TemporaryDirectory()
    # create dummy data
    dict_file = osp.join(tmp_dir.name, 'fake_chars.txt')
    _create_dummy_dict_file(dict_file)

    label_convertor = dict(
        type='CTCConvertor', dict_file=dict_file, with_unknown=False)

    preprocessor = None
    backbone = dict(type='VeryDeepVgg', leaky_relu=False)
    encoder = None
    decoder = dict(type='CRNNDecoder', in_channels=512, rnn_flag=True)
    loss = dict(type='CTCLoss')

    with pytest.raises(AssertionError):
        EncodeDecodeRecognizer(backbone=None)
    with pytest.raises(AssertionError):
        EncodeDecodeRecognizer(decoder=None)
    with pytest.raises(AssertionError):
        EncodeDecodeRecognizer(loss=None)
    with pytest.raises(AssertionError):
        EncodeDecodeRecognizer(label_convertor=None)

    recognizer = EncodeDecodeRecognizer(
        preprocessor=preprocessor,
        backbone=backbone,
        encoder=encoder,
        decoder=decoder,
        loss=loss,
        label_convertor=label_convertor)

    recognizer.init_weights()
    recognizer.train()

    imgs = torch.rand(1, 3, 32, 160)

    # test extract feat
    feat = recognizer.extract_feat(imgs)
    assert feat.shape == torch.Size([1, 512, 1, 41])

    # test forward train
    img_metas = [{
        'text': 'hello',
        'resize_shape': (32, 120, 3),
        'valid_ratio': 1.0
    }]
    losses = recognizer.forward_train(imgs, img_metas)
    assert isinstance(losses, dict)
    assert 'loss_ctc' in losses

    # test simple test
    results = recognizer.simple_test(imgs, img_metas)
    assert isinstance(results, list)
    assert isinstance(results[0], dict)
    assert 'text' in results[0]
    assert 'score' in results[0]

    # test onnx export
    recognizer.forward = partial(
        recognizer.simple_test,
        img_metas=img_metas,
        return_loss=False,
        rescale=True)
    with tempfile.TemporaryDirectory() as tmpdirname:
        onnx_path = f'{tmpdirname}/tmp.onnx'
        torch.onnx.export(
            recognizer, (imgs, ),
            onnx_path,
            input_names=['input'],
            output_names=['output'],
            export_params=True,
            keep_initializers_as_inputs=False)

    # test aug_test
    aug_results = recognizer.aug_test([imgs, imgs], [img_metas, img_metas])
    assert isinstance(aug_results, list)
    assert isinstance(aug_results[0], dict)
    assert 'text' in aug_results[0]
    assert 'score' in aug_results[0]

    tmp_dir.cleanup()


def test_seg_recognizer():
    tmp_dir = tempfile.TemporaryDirectory()
    # create dummy data
    dict_file = osp.join(tmp_dir.name, 'fake_chars.txt')
    _create_dummy_dict_file(dict_file)

    label_convertor = dict(
        type='SegConvertor', dict_file=dict_file, with_unknown=False)

    preprocessor = None
    backbone = dict(
        type='ResNet31OCR',
        layers=[1, 2, 5, 3],
        channels=[32, 64, 128, 256, 512, 512],
        out_indices=[0, 1, 2, 3],
        stage4_pool_cfg=dict(kernel_size=2, stride=2),
        last_stage_pool=True)
    neck = dict(
        type='FPNOCR', in_channels=[128, 256, 512, 512], out_channels=256)
    head = dict(
        type='SegHead',
        in_channels=256,
        upsample_param=dict(scale_factor=2.0, mode='nearest'))
    loss = dict(type='SegLoss', seg_downsample_ratio=1.0)

    with pytest.raises(AssertionError):
        SegRecognizer(backbone=None)
    with pytest.raises(AssertionError):
        SegRecognizer(neck=None)
    with pytest.raises(AssertionError):
        SegRecognizer(head=None)
    with pytest.raises(AssertionError):
        SegRecognizer(loss=None)
    with pytest.raises(AssertionError):
        SegRecognizer(label_convertor=None)

    recognizer = SegRecognizer(
        preprocessor=preprocessor,
        backbone=backbone,
        neck=neck,
        head=head,
        loss=loss,
        label_convertor=label_convertor)

    recognizer.init_weights()
    recognizer.train()

    imgs = torch.rand(1, 3, 64, 256)

    # test extract feat
    feats = recognizer.extract_feat(imgs)
    assert len(feats) == 4

    assert feats[0].shape == torch.Size([1, 128, 32, 128])
    assert feats[1].shape == torch.Size([1, 256, 16, 64])
    assert feats[2].shape == torch.Size([1, 512, 8, 32])
    assert feats[3].shape == torch.Size([1, 512, 4, 16])

    attn_tgt = np.zeros((64, 256), dtype=np.float32)
    segm_tgt = np.zeros((64, 256), dtype=np.float32)
    mask = np.zeros((64, 256), dtype=np.float32)
    gt_kernels = BitmapMasks([attn_tgt, segm_tgt, mask], 64, 256)

    # test forward train
    img_metas = [{
        'text': 'hello',
        'resize_shape': (64, 256, 3),
        'valid_ratio': 1.0
    }]
    losses = recognizer.forward_train(imgs, img_metas, gt_kernels=[gt_kernels])
    assert isinstance(losses, dict)

    # test simple test
    results = recognizer.simple_test(imgs, img_metas)
    assert isinstance(results, list)
    assert isinstance(results[0], dict)
    assert 'text' in results[0]
    assert 'score' in results[0]

    # test aug_test
    aug_results = recognizer.aug_test([imgs, imgs], [img_metas, img_metas])
    assert isinstance(aug_results, list)
    assert isinstance(aug_results[0], dict)
    assert 'text' in aug_results[0]
    assert 'score' in aug_results[0]

    tmp_dir.cleanup()