Spaces:
Runtime error
Runtime error
File size: 15,708 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 |
# Copyright (c) OpenMMLab. All rights reserved.
import math
import mmcv
import numpy as np
import torch
import torchvision.transforms.functional as TF
from mmcv.runner.dist_utils import get_dist_info
from mmdet.datasets.builder import PIPELINES
from PIL import Image
from shapely.geometry import Polygon
from shapely.geometry import box as shapely_box
import mmocr.utils as utils
from mmocr.datasets.pipelines.crop import warp_img
@PIPELINES.register_module()
class ResizeOCR:
"""Image resizing and padding for OCR.
Args:
height (int | tuple(int)): Image height after resizing.
min_width (none | int | tuple(int)): Image minimum width
after resizing.
max_width (none | int | tuple(int)): Image maximum width
after resizing.
keep_aspect_ratio (bool): Keep image aspect ratio if True
during resizing, Otherwise resize to the size height *
max_width.
img_pad_value (int): Scalar to fill padding area.
width_downsample_ratio (float): Downsample ratio in horizontal
direction from input image to output feature.
backend (str | None): The image resize backend type. Options are `cv2`,
`pillow`, `None`. If backend is None, the global imread_backend
specified by ``mmcv.use_backend()`` will be used. Default: None.
"""
def __init__(self,
height,
min_width=None,
max_width=None,
keep_aspect_ratio=True,
img_pad_value=0,
width_downsample_ratio=1.0 / 16,
backend=None):
assert isinstance(height, (int, tuple))
assert utils.is_none_or_type(min_width, (int, tuple))
assert utils.is_none_or_type(max_width, (int, tuple))
if not keep_aspect_ratio:
assert max_width is not None, ('"max_width" must assigned '
'if "keep_aspect_ratio" is False')
assert isinstance(img_pad_value, int)
if isinstance(height, tuple):
assert isinstance(min_width, tuple)
assert isinstance(max_width, tuple)
assert len(height) == len(min_width) == len(max_width)
self.height = height
self.min_width = min_width
self.max_width = max_width
self.keep_aspect_ratio = keep_aspect_ratio
self.img_pad_value = img_pad_value
self.width_downsample_ratio = width_downsample_ratio
self.backend = backend
def __call__(self, results):
rank, _ = get_dist_info()
if isinstance(self.height, int):
dst_height = self.height
dst_min_width = self.min_width
dst_max_width = self.max_width
else:
# Multi-scale resize used in distributed training.
# Choose one (height, width) pair for one rank id.
idx = rank % len(self.height)
dst_height = self.height[idx]
dst_min_width = self.min_width[idx]
dst_max_width = self.max_width[idx]
img_shape = results['img_shape']
ori_height, ori_width = img_shape[:2]
valid_ratio = 1.0
resize_shape = list(img_shape)
pad_shape = list(img_shape)
if self.keep_aspect_ratio:
new_width = math.ceil(float(dst_height) / ori_height * ori_width)
width_divisor = int(1 / self.width_downsample_ratio)
# make sure new_width is an integral multiple of width_divisor.
if new_width % width_divisor != 0:
new_width = round(new_width / width_divisor) * width_divisor
if dst_min_width is not None:
new_width = max(dst_min_width, new_width)
if dst_max_width is not None:
valid_ratio = min(1.0, 1.0 * new_width / dst_max_width)
resize_width = min(dst_max_width, new_width)
img_resize = mmcv.imresize(
results['img'], (resize_width, dst_height),
backend=self.backend)
resize_shape = img_resize.shape
pad_shape = img_resize.shape
if new_width < dst_max_width:
img_resize = mmcv.impad(
img_resize,
shape=(dst_height, dst_max_width),
pad_val=self.img_pad_value)
pad_shape = img_resize.shape
else:
img_resize = mmcv.imresize(
results['img'], (new_width, dst_height),
backend=self.backend)
resize_shape = img_resize.shape
pad_shape = img_resize.shape
else:
img_resize = mmcv.imresize(
results['img'], (dst_max_width, dst_height),
backend=self.backend)
resize_shape = img_resize.shape
pad_shape = img_resize.shape
results['img'] = img_resize
results['img_shape'] = resize_shape
results['resize_shape'] = resize_shape
results['pad_shape'] = pad_shape
results['valid_ratio'] = valid_ratio
return results
@PIPELINES.register_module()
class ToTensorOCR:
"""Convert a ``PIL Image`` or ``numpy.ndarray`` to tensor."""
def __init__(self):
pass
def __call__(self, results):
results['img'] = TF.to_tensor(results['img'].copy())
return results
@PIPELINES.register_module()
class NormalizeOCR:
"""Normalize a tensor image with mean and standard deviation."""
def __init__(self, mean, std):
self.mean = mean
self.std = std
def __call__(self, results):
results['img'] = TF.normalize(results['img'], self.mean, self.std)
results['img_norm_cfg'] = dict(mean=self.mean, std=self.std)
return results
@PIPELINES.register_module()
class OnlineCropOCR:
"""Crop text areas from whole image with bounding box jitter. If no bbox is
given, return directly.
Args:
box_keys (list[str]): Keys in results which correspond to RoI bbox.
jitter_prob (float): The probability of box jitter.
max_jitter_ratio_x (float): Maximum horizontal jitter ratio
relative to height.
max_jitter_ratio_y (float): Maximum vertical jitter ratio
relative to height.
"""
def __init__(self,
box_keys=['x1', 'y1', 'x2', 'y2', 'x3', 'y3', 'x4', 'y4'],
jitter_prob=0.5,
max_jitter_ratio_x=0.05,
max_jitter_ratio_y=0.02):
assert utils.is_type_list(box_keys, str)
assert 0 <= jitter_prob <= 1
assert 0 <= max_jitter_ratio_x <= 1
assert 0 <= max_jitter_ratio_y <= 1
self.box_keys = box_keys
self.jitter_prob = jitter_prob
self.max_jitter_ratio_x = max_jitter_ratio_x
self.max_jitter_ratio_y = max_jitter_ratio_y
def __call__(self, results):
if 'img_info' not in results:
return results
crop_flag = True
box = []
for key in self.box_keys:
if key not in results['img_info']:
crop_flag = False
break
box.append(float(results['img_info'][key]))
if not crop_flag:
return results
jitter_flag = np.random.random() > self.jitter_prob
kwargs = dict(
jitter_flag=jitter_flag,
jitter_ratio_x=self.max_jitter_ratio_x,
jitter_ratio_y=self.max_jitter_ratio_y)
crop_img = warp_img(results['img'], box, **kwargs)
results['img'] = crop_img
results['img_shape'] = crop_img.shape
return results
@PIPELINES.register_module()
class FancyPCA:
"""Implementation of PCA based image augmentation, proposed in the paper
``Imagenet Classification With Deep Convolutional Neural Networks``.
It alters the intensities of RGB values along the principal components of
ImageNet dataset.
"""
def __init__(self, eig_vec=None, eig_val=None):
if eig_vec is None:
eig_vec = torch.Tensor([
[-0.5675, +0.7192, +0.4009],
[-0.5808, -0.0045, -0.8140],
[-0.5836, -0.6948, +0.4203],
]).t()
if eig_val is None:
eig_val = torch.Tensor([[0.2175, 0.0188, 0.0045]])
self.eig_val = eig_val # 1*3
self.eig_vec = eig_vec # 3*3
def pca(self, tensor):
assert tensor.size(0) == 3
alpha = torch.normal(mean=torch.zeros_like(self.eig_val)) * 0.1
reconst = torch.mm(self.eig_val * alpha, self.eig_vec)
tensor = tensor + reconst.view(3, 1, 1)
return tensor
def __call__(self, results):
img = results['img']
tensor = self.pca(img)
results['img'] = tensor
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class RandomPaddingOCR:
"""Pad the given image on all sides, as well as modify the coordinates of
character bounding box in image.
Args:
max_ratio (list[int]): [left, top, right, bottom].
box_type (None|str): Character box type. If not none,
should be either 'char_rects' or 'char_quads', with
'char_rects' for rectangle with ``xyxy`` style and
'char_quads' for quadrangle with ``x1y1x2y2x3y3x4y4`` style.
"""
def __init__(self, max_ratio=None, box_type=None):
if max_ratio is None:
max_ratio = [0.1, 0.2, 0.1, 0.2]
else:
assert utils.is_type_list(max_ratio, float)
assert len(max_ratio) == 4
assert box_type is None or box_type in ('char_rects', 'char_quads')
self.max_ratio = max_ratio
self.box_type = box_type
def __call__(self, results):
img_shape = results['img_shape']
ori_height, ori_width = img_shape[:2]
random_padding_left = round(
np.random.uniform(0, self.max_ratio[0]) * ori_width)
random_padding_top = round(
np.random.uniform(0, self.max_ratio[1]) * ori_height)
random_padding_right = round(
np.random.uniform(0, self.max_ratio[2]) * ori_width)
random_padding_bottom = round(
np.random.uniform(0, self.max_ratio[3]) * ori_height)
padding = (random_padding_left, random_padding_top,
random_padding_right, random_padding_bottom)
img = mmcv.impad(results['img'], padding=padding, padding_mode='edge')
results['img'] = img
results['img_shape'] = img.shape
if self.box_type is not None:
num_points = 2 if self.box_type == 'char_rects' else 4
char_num = len(results['ann_info'][self.box_type])
for i in range(char_num):
for j in range(num_points):
results['ann_info'][self.box_type][i][
j * 2] += random_padding_left
results['ann_info'][self.box_type][i][
j * 2 + 1] += random_padding_top
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class RandomRotateImageBox:
"""Rotate augmentation for segmentation based text recognition.
Args:
min_angle (int): Minimum rotation angle for image and box.
max_angle (int): Maximum rotation angle for image and box.
box_type (str): Character box type, should be either
'char_rects' or 'char_quads', with 'char_rects'
for rectangle with ``xyxy`` style and 'char_quads'
for quadrangle with ``x1y1x2y2x3y3x4y4`` style.
"""
def __init__(self, min_angle=-10, max_angle=10, box_type='char_quads'):
assert box_type in ('char_rects', 'char_quads')
self.min_angle = min_angle
self.max_angle = max_angle
self.box_type = box_type
def __call__(self, results):
in_img = results['img']
in_chars = results['ann_info']['chars']
in_boxes = results['ann_info'][self.box_type]
img_width, img_height = in_img.size
rotate_center = [img_width / 2., img_height / 2.]
tan_temp_max_angle = rotate_center[1] / rotate_center[0]
temp_max_angle = np.arctan(tan_temp_max_angle) * 180. / np.pi
random_angle = np.random.uniform(
max(self.min_angle, -temp_max_angle),
min(self.max_angle, temp_max_angle))
random_angle_radian = random_angle * np.pi / 180.
img_box = shapely_box(0, 0, img_width, img_height)
out_img = TF.rotate(
in_img,
random_angle,
resample=False,
expand=False,
center=rotate_center)
out_boxes, out_chars = self.rotate_bbox(in_boxes, in_chars,
random_angle_radian,
rotate_center, img_box)
results['img'] = out_img
results['ann_info']['chars'] = out_chars
results['ann_info'][self.box_type] = out_boxes
return results
@staticmethod
def rotate_bbox(boxes, chars, angle, center, img_box):
out_boxes = []
out_chars = []
for idx, bbox in enumerate(boxes):
temp_bbox = []
for i in range(len(bbox) // 2):
point = [bbox[2 * i], bbox[2 * i + 1]]
temp_bbox.append(
RandomRotateImageBox.rotate_point(point, angle, center))
poly_temp_bbox = Polygon(temp_bbox).buffer(0)
if poly_temp_bbox.is_valid:
if img_box.intersects(poly_temp_bbox) and (
not img_box.touches(poly_temp_bbox)):
temp_bbox_area = poly_temp_bbox.area
intersect_area = img_box.intersection(poly_temp_bbox).area
intersect_ratio = intersect_area / temp_bbox_area
if intersect_ratio >= 0.7:
out_box = []
for p in temp_bbox:
out_box.extend(p)
out_boxes.append(out_box)
out_chars.append(chars[idx])
return out_boxes, out_chars
@staticmethod
def rotate_point(point, angle, center):
cos_theta = math.cos(-angle)
sin_theta = math.sin(-angle)
c_x = center[0]
c_y = center[1]
new_x = (point[0] - c_x) * cos_theta - (point[1] -
c_y) * sin_theta + c_x
new_y = (point[0] - c_x) * sin_theta + (point[1] -
c_y) * cos_theta + c_y
return [new_x, new_y]
@PIPELINES.register_module()
class OpencvToPil:
"""Convert ``numpy.ndarray`` (bgr) to ``PIL Image`` (rgb)."""
def __init__(self, **kwargs):
pass
def __call__(self, results):
img = results['img'][..., ::-1]
img = Image.fromarray(img)
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
@PIPELINES.register_module()
class PilToOpencv:
"""Convert ``PIL Image`` (rgb) to ``numpy.ndarray`` (bgr)."""
def __init__(self, **kwargs):
pass
def __call__(self, results):
img = np.asarray(results['img'])
img = img[..., ::-1]
results['img'] = img
return results
def __repr__(self):
repr_str = self.__class__.__name__
return repr_str
|