Spaces:
Runtime error
Runtime error
File size: 9,113 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 |
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
import pyclipper
from mmdet.core import BitmapMasks
from mmdet.datasets.builder import PIPELINES
from shapely.geometry import Polygon
from . import BaseTextDetTargets
@PIPELINES.register_module()
class DBNetTargets(BaseTextDetTargets):
"""Generate gt shrunk text, gt threshold map, and their effective region
masks to learn DBNet: Real-time Scene Text Detection with Differentiable
Binarization [https://arxiv.org/abs/1911.08947]. This was partially adapted
from https://github.com/MhLiao/DB.
Args:
shrink_ratio (float): The area shrunk ratio between text
kernels and their text masks.
thr_min (float): The minimum value of the threshold map.
thr_max (float): The maximum value of the threshold map.
min_short_size (int): The minimum size of polygon below which
the polygon is invalid.
"""
def __init__(self,
shrink_ratio=0.4,
thr_min=0.3,
thr_max=0.7,
min_short_size=8):
super().__init__()
self.shrink_ratio = shrink_ratio
self.thr_min = thr_min
self.thr_max = thr_max
self.min_short_size = min_short_size
def find_invalid(self, results):
"""Find invalid polygons.
Args:
results (dict): The dict containing gt_mask.
Returns:
ignore_tags (list[bool]): The indicators for ignoring polygons.
"""
texts = results['gt_masks'].masks
ignore_tags = [False] * len(texts)
for idx, text in enumerate(texts):
if self.invalid_polygon(text[0]):
ignore_tags[idx] = True
return ignore_tags
def invalid_polygon(self, poly):
"""Judge the input polygon is invalid or not. It is invalid if its area
smaller than 1 or the shorter side of its minimum bounding box smaller
than min_short_size.
Args:
poly (ndarray): The polygon boundary point sequence.
Returns:
True/False (bool): Whether the polygon is invalid.
"""
area = self.polygon_area(poly)
if abs(area) < 1:
return True
short_size = min(self.polygon_size(poly))
if short_size < self.min_short_size:
return True
return False
def ignore_texts(self, results, ignore_tags):
"""Ignore gt masks and gt_labels while padding gt_masks_ignore in
results given ignore_tags.
Args:
results (dict): Result for one image.
ignore_tags (list[int]): Indicate whether to ignore its
corresponding ground truth text.
Returns:
results (dict): Results after filtering.
"""
flag_len = len(ignore_tags)
assert flag_len == len(results['gt_masks'].masks)
assert flag_len == len(results['gt_labels'])
results['gt_masks_ignore'].masks += [
mask for i, mask in enumerate(results['gt_masks'].masks)
if ignore_tags[i]
]
results['gt_masks'].masks = [
mask for i, mask in enumerate(results['gt_masks'].masks)
if not ignore_tags[i]
]
results['gt_labels'] = np.array([
mask for i, mask in enumerate(results['gt_labels'])
if not ignore_tags[i]
])
new_ignore_tags = [ignore for ignore in ignore_tags if not ignore]
return results, new_ignore_tags
def generate_thr_map(self, img_size, polygons):
"""Generate threshold map.
Args:
img_size (tuple(int)): The image size (h,w)
polygons (list(ndarray)): The polygon list.
Returns:
thr_map (ndarray): The generated threshold map.
thr_mask (ndarray): The effective mask of threshold map.
"""
thr_map = np.zeros(img_size, dtype=np.float32)
thr_mask = np.zeros(img_size, dtype=np.uint8)
for polygon in polygons:
self.draw_border_map(polygon[0], thr_map, mask=thr_mask)
thr_map = thr_map * (self.thr_max - self.thr_min) + self.thr_min
return thr_map, thr_mask
def draw_border_map(self, polygon, canvas, mask):
"""Generate threshold map for one polygon.
Args:
polygon(ndarray): The polygon boundary ndarray.
canvas(ndarray): The generated threshold map.
mask(ndarray): The generated threshold mask.
"""
polygon = polygon.reshape(-1, 2)
assert polygon.ndim == 2
assert polygon.shape[1] == 2
polygon_shape = Polygon(polygon)
distance = (
polygon_shape.area * (1 - np.power(self.shrink_ratio, 2)) /
polygon_shape.length)
subject = [tuple(p) for p in polygon]
padding = pyclipper.PyclipperOffset()
padding.AddPath(subject, pyclipper.JT_ROUND,
pyclipper.ET_CLOSEDPOLYGON)
padded_polygon = padding.Execute(distance)
if len(padded_polygon) > 0:
padded_polygon = np.array(padded_polygon[0])
else:
print(f'padding {polygon} with {distance} gets {padded_polygon}')
padded_polygon = polygon.copy().astype(np.int32)
x_min = padded_polygon[:, 0].min()
x_max = padded_polygon[:, 0].max()
y_min = padded_polygon[:, 1].min()
y_max = padded_polygon[:, 1].max()
width = x_max - x_min + 1
height = y_max - y_min + 1
polygon[:, 0] = polygon[:, 0] - x_min
polygon[:, 1] = polygon[:, 1] - y_min
xs = np.broadcast_to(
np.linspace(0, width - 1, num=width).reshape(1, width),
(height, width))
ys = np.broadcast_to(
np.linspace(0, height - 1, num=height).reshape(height, 1),
(height, width))
distance_map = np.zeros((polygon.shape[0], height, width),
dtype=np.float32)
for i in range(polygon.shape[0]):
j = (i + 1) % polygon.shape[0]
absolute_distance = self.point2line(xs, ys, polygon[i], polygon[j])
distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
distance_map = distance_map.min(axis=0)
x_min_valid = min(max(0, x_min), canvas.shape[1] - 1)
x_max_valid = min(max(0, x_max), canvas.shape[1] - 1)
y_min_valid = min(max(0, y_min), canvas.shape[0] - 1)
y_max_valid = min(max(0, y_max), canvas.shape[0] - 1)
if x_min_valid - x_min >= width or y_min_valid - y_min >= height:
return
cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
canvas[y_min_valid:y_max_valid + 1,
x_min_valid:x_max_valid + 1] = np.fmax(
1 - distance_map[y_min_valid - y_min:y_max_valid - y_max +
height, x_min_valid - x_min:x_max_valid -
x_max + width],
canvas[y_min_valid:y_max_valid + 1,
x_min_valid:x_max_valid + 1])
def generate_targets(self, results):
"""Generate the gt targets for DBNet.
Args:
results (dict): The input result dictionary.
Returns:
results (dict): The output result dictionary.
"""
assert isinstance(results, dict)
if 'bbox_fields' in results:
results['bbox_fields'].clear()
ignore_tags = self.find_invalid(results)
results, ignore_tags = self.ignore_texts(results, ignore_tags)
h, w, _ = results['img_shape']
polygons = results['gt_masks'].masks
# generate gt_shrink_kernel
gt_shrink, ignore_tags = self.generate_kernels((h, w),
polygons,
self.shrink_ratio,
ignore_tags=ignore_tags)
results, ignore_tags = self.ignore_texts(results, ignore_tags)
# genenrate gt_shrink_mask
polygons_ignore = results['gt_masks_ignore'].masks
gt_shrink_mask = self.generate_effective_mask((h, w), polygons_ignore)
# generate gt_threshold and gt_threshold_mask
polygons = results['gt_masks'].masks
gt_thr, gt_thr_mask = self.generate_thr_map((h, w), polygons)
results['mask_fields'].clear() # rm gt_masks encoded by polygons
results.pop('gt_labels', None)
results.pop('gt_masks', None)
results.pop('gt_bboxes', None)
results.pop('gt_bboxes_ignore', None)
mapping = {
'gt_shrink': gt_shrink,
'gt_shrink_mask': gt_shrink_mask,
'gt_thr': gt_thr,
'gt_thr_mask': gt_thr_mask
}
for key, value in mapping.items():
value = value if isinstance(value, list) else [value]
results[key] = BitmapMasks(value, h, w)
results['mask_fields'].append(key)
return results
|