File size: 9,113 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
# Copyright (c) OpenMMLab. All rights reserved.
import cv2
import numpy as np
import pyclipper
from mmdet.core import BitmapMasks
from mmdet.datasets.builder import PIPELINES
from shapely.geometry import Polygon

from . import BaseTextDetTargets


@PIPELINES.register_module()
class DBNetTargets(BaseTextDetTargets):
    """Generate gt shrunk text, gt threshold map, and their effective region
    masks to learn DBNet: Real-time Scene Text Detection with Differentiable
    Binarization [https://arxiv.org/abs/1911.08947]. This was partially adapted
    from https://github.com/MhLiao/DB.

    Args:
        shrink_ratio (float): The area shrunk ratio between text
            kernels and their text masks.
        thr_min (float): The minimum value of the threshold map.
        thr_max (float): The maximum value of the threshold map.
        min_short_size (int): The minimum size of polygon below which
            the polygon is invalid.
    """

    def __init__(self,
                 shrink_ratio=0.4,
                 thr_min=0.3,
                 thr_max=0.7,
                 min_short_size=8):
        super().__init__()
        self.shrink_ratio = shrink_ratio
        self.thr_min = thr_min
        self.thr_max = thr_max
        self.min_short_size = min_short_size

    def find_invalid(self, results):
        """Find invalid polygons.

        Args:
            results (dict): The dict containing gt_mask.

        Returns:
            ignore_tags (list[bool]): The indicators for ignoring polygons.
        """
        texts = results['gt_masks'].masks
        ignore_tags = [False] * len(texts)

        for idx, text in enumerate(texts):
            if self.invalid_polygon(text[0]):
                ignore_tags[idx] = True
        return ignore_tags

    def invalid_polygon(self, poly):
        """Judge the input polygon is invalid or not. It is invalid if its area
        smaller than 1 or the shorter side of its minimum bounding box smaller
        than min_short_size.

        Args:
            poly (ndarray): The polygon boundary point sequence.

        Returns:
            True/False (bool): Whether the polygon is invalid.
        """
        area = self.polygon_area(poly)
        if abs(area) < 1:
            return True
        short_size = min(self.polygon_size(poly))
        if short_size < self.min_short_size:
            return True

        return False

    def ignore_texts(self, results, ignore_tags):
        """Ignore gt masks and gt_labels while padding gt_masks_ignore in
        results given ignore_tags.

        Args:
            results (dict): Result for one image.
            ignore_tags (list[int]): Indicate whether to ignore its
                corresponding ground truth text.

        Returns:
            results (dict): Results after filtering.
        """
        flag_len = len(ignore_tags)
        assert flag_len == len(results['gt_masks'].masks)
        assert flag_len == len(results['gt_labels'])

        results['gt_masks_ignore'].masks += [
            mask for i, mask in enumerate(results['gt_masks'].masks)
            if ignore_tags[i]
        ]
        results['gt_masks'].masks = [
            mask for i, mask in enumerate(results['gt_masks'].masks)
            if not ignore_tags[i]
        ]
        results['gt_labels'] = np.array([
            mask for i, mask in enumerate(results['gt_labels'])
            if not ignore_tags[i]
        ])
        new_ignore_tags = [ignore for ignore in ignore_tags if not ignore]

        return results, new_ignore_tags

    def generate_thr_map(self, img_size, polygons):
        """Generate threshold map.

        Args:
            img_size (tuple(int)): The image size (h,w)
            polygons (list(ndarray)): The polygon list.

        Returns:
            thr_map (ndarray): The generated threshold map.
            thr_mask (ndarray): The effective mask of threshold map.
        """
        thr_map = np.zeros(img_size, dtype=np.float32)
        thr_mask = np.zeros(img_size, dtype=np.uint8)

        for polygon in polygons:
            self.draw_border_map(polygon[0], thr_map, mask=thr_mask)
        thr_map = thr_map * (self.thr_max - self.thr_min) + self.thr_min

        return thr_map, thr_mask

    def draw_border_map(self, polygon, canvas, mask):
        """Generate threshold map for one polygon.

        Args:
            polygon(ndarray): The polygon boundary ndarray.
            canvas(ndarray): The generated threshold map.
            mask(ndarray): The generated threshold mask.
        """
        polygon = polygon.reshape(-1, 2)
        assert polygon.ndim == 2
        assert polygon.shape[1] == 2

        polygon_shape = Polygon(polygon)
        distance = (
            polygon_shape.area * (1 - np.power(self.shrink_ratio, 2)) /
            polygon_shape.length)
        subject = [tuple(p) for p in polygon]
        padding = pyclipper.PyclipperOffset()
        padding.AddPath(subject, pyclipper.JT_ROUND,
                        pyclipper.ET_CLOSEDPOLYGON)
        padded_polygon = padding.Execute(distance)
        if len(padded_polygon) > 0:
            padded_polygon = np.array(padded_polygon[0])
        else:
            print(f'padding {polygon} with {distance} gets {padded_polygon}')
            padded_polygon = polygon.copy().astype(np.int32)

        x_min = padded_polygon[:, 0].min()
        x_max = padded_polygon[:, 0].max()
        y_min = padded_polygon[:, 1].min()
        y_max = padded_polygon[:, 1].max()

        width = x_max - x_min + 1
        height = y_max - y_min + 1

        polygon[:, 0] = polygon[:, 0] - x_min
        polygon[:, 1] = polygon[:, 1] - y_min

        xs = np.broadcast_to(
            np.linspace(0, width - 1, num=width).reshape(1, width),
            (height, width))
        ys = np.broadcast_to(
            np.linspace(0, height - 1, num=height).reshape(height, 1),
            (height, width))

        distance_map = np.zeros((polygon.shape[0], height, width),
                                dtype=np.float32)
        for i in range(polygon.shape[0]):
            j = (i + 1) % polygon.shape[0]
            absolute_distance = self.point2line(xs, ys, polygon[i], polygon[j])
            distance_map[i] = np.clip(absolute_distance / distance, 0, 1)
        distance_map = distance_map.min(axis=0)

        x_min_valid = min(max(0, x_min), canvas.shape[1] - 1)
        x_max_valid = min(max(0, x_max), canvas.shape[1] - 1)
        y_min_valid = min(max(0, y_min), canvas.shape[0] - 1)
        y_max_valid = min(max(0, y_max), canvas.shape[0] - 1)

        if x_min_valid - x_min >= width or y_min_valid - y_min >= height:
            return

        cv2.fillPoly(mask, [padded_polygon.astype(np.int32)], 1.0)
        canvas[y_min_valid:y_max_valid + 1,
               x_min_valid:x_max_valid + 1] = np.fmax(
                   1 - distance_map[y_min_valid - y_min:y_max_valid - y_max +
                                    height, x_min_valid - x_min:x_max_valid -
                                    x_max + width],
                   canvas[y_min_valid:y_max_valid + 1,
                          x_min_valid:x_max_valid + 1])

    def generate_targets(self, results):
        """Generate the gt targets for DBNet.

        Args:
            results (dict): The input result dictionary.

        Returns:
            results (dict): The output result dictionary.
        """
        assert isinstance(results, dict)

        if 'bbox_fields' in results:
            results['bbox_fields'].clear()

        ignore_tags = self.find_invalid(results)
        results, ignore_tags = self.ignore_texts(results, ignore_tags)

        h, w, _ = results['img_shape']
        polygons = results['gt_masks'].masks

        # generate gt_shrink_kernel
        gt_shrink, ignore_tags = self.generate_kernels((h, w),
                                                       polygons,
                                                       self.shrink_ratio,
                                                       ignore_tags=ignore_tags)

        results, ignore_tags = self.ignore_texts(results, ignore_tags)
        # genenrate gt_shrink_mask
        polygons_ignore = results['gt_masks_ignore'].masks
        gt_shrink_mask = self.generate_effective_mask((h, w), polygons_ignore)

        # generate gt_threshold and gt_threshold_mask
        polygons = results['gt_masks'].masks
        gt_thr, gt_thr_mask = self.generate_thr_map((h, w), polygons)

        results['mask_fields'].clear()  # rm gt_masks encoded by polygons
        results.pop('gt_labels', None)
        results.pop('gt_masks', None)
        results.pop('gt_bboxes', None)
        results.pop('gt_bboxes_ignore', None)

        mapping = {
            'gt_shrink': gt_shrink,
            'gt_shrink_mask': gt_shrink_mask,
            'gt_thr': gt_thr,
            'gt_thr_mask': gt_thr_mask
        }
        for key, value in mapping.items():
            value = value if isinstance(value, list) else [value]
            results[key] = BitmapMasks(value, h, w)
            results['mask_fields'].append(key)

        return results