File size: 9,055 Bytes
2366e36
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
#!/usr/bin/env python
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import os
import warnings

import mmcv
import torch
from mmcv import Config, DictAction
from mmcv.cnn import fuse_conv_bn
from mmcv.parallel import MMDataParallel, MMDistributedDataParallel
from mmcv.runner import (get_dist_info, init_dist, load_checkpoint,
                         wrap_fp16_model)
from mmdet.apis import multi_gpu_test

from mmocr.apis.test import single_gpu_test
from mmocr.apis.utils import (disable_text_recog_aug_test,
                              replace_image_to_tensor)
from mmocr.datasets import build_dataloader, build_dataset
from mmocr.models import build_detector
from mmocr.utils import revert_sync_batchnorm, setup_multi_processes


def parse_args():
    parser = argparse.ArgumentParser(
        description='MMOCR test (and eval) a model.')
    parser.add_argument('config', help='Test config file path.')
    parser.add_argument('checkpoint', help='Checkpoint file.')
    parser.add_argument('--out', help='Output result file in pickle format.')
    parser.add_argument(
        '--fuse-conv-bn',
        action='store_true',
        help='Whether to fuse conv and bn, this will slightly increase'
        'the inference speed.')
    parser.add_argument(
        '--gpu-id',
        type=int,
        default=0,
        help='id of gpu to use '
        '(only applicable to non-distributed testing)')
    parser.add_argument(
        '--format-only',
        action='store_true',
        help='Format the output results without performing evaluation. It is'
        'useful when you want to format the results to a specific format and '
        'submit them to the test server.')
    parser.add_argument(
        '--eval',
        type=str,
        nargs='+',
        help='The evaluation metrics, which depends on the dataset, e.g.,'
        '"bbox", "seg", "proposal" for COCO, and "mAP", "recall" for'
        'PASCAL VOC.')
    parser.add_argument('--show', action='store_true', help='Show results.')
    parser.add_argument(
        '--show-dir', help='Directory where the output images will be saved.')
    parser.add_argument(
        '--show-score-thr',
        type=float,
        default=0.3,
        help='Score threshold (default: 0.3).')
    parser.add_argument(
        '--gpu-collect',
        action='store_true',
        help='Whether to use gpu to collect results.')
    parser.add_argument(
        '--tmpdir',
        help='The tmp directory used for collecting results from multiple '
        'workers, available when gpu-collect is not specified.')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='Override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into the config file. If the value '
        'to be overwritten is a list, it should be of the form of either '
        'key="[a,b]" or key=a,b. The argument also allows nested list/tuple '
        'values, e.g. key="[(a,b),(c,d)]". Note that the quotation marks '
        'are necessary and that no white space is allowed.')
    parser.add_argument(
        '--options',
        nargs='+',
        action=DictAction,
        help='Custom options for evaluation, the key-value pair in xxx=yyy '
        'format will be kwargs for dataset.evaluate() function (deprecate), '
        'change to --eval-options instead.')
    parser.add_argument(
        '--eval-options',
        nargs='+',
        action=DictAction,
        help='Custom options for evaluation, the key-value pair in xxx=yyy '
        'format will be kwargs for dataset.evaluate() function.')
    parser.add_argument(
        '--launcher',
        choices=['none', 'pytorch', 'slurm', 'mpi'],
        default='none',
        help='Options for job launcher.')
    parser.add_argument('--local_rank', type=int, default=0)
    args = parser.parse_args()
    if 'LOCAL_RANK' not in os.environ:
        os.environ['LOCAL_RANK'] = str(args.local_rank)

    if args.options and args.eval_options:
        raise ValueError(
            '--options and --eval-options cannot be both '
            'specified, --options is deprecated in favor of --eval-options.')
    if args.options:
        warnings.warn('--options is deprecated in favor of --eval-options.')
        args.eval_options = args.options
    return args


def main():
    args = parse_args()

    assert (
        args.out or args.eval or args.format_only or args.show
        or args.show_dir), (
            'Please specify at least one operation (save/eval/format/show the '
            'results / save the results) with the argument "--out", "--eval"'
            ', "--format-only", "--show" or "--show-dir".')

    if args.eval and args.format_only:
        raise ValueError('--eval and --format_only cannot be both specified.')

    if args.out is not None and not args.out.endswith(('.pkl', '.pickle')):
        raise ValueError('The output file must be a pkl file.')

    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    setup_multi_processes(cfg)

    # set cudnn_benchmark
    if cfg.get('cudnn_benchmark', False):
        torch.backends.cudnn.benchmark = True
    if cfg.model.get('pretrained'):
        cfg.model.pretrained = None
    if cfg.model.get('neck'):
        if isinstance(cfg.model.neck, list):
            for neck_cfg in cfg.model.neck:
                if neck_cfg.get('rfp_backbone'):
                    if neck_cfg.rfp_backbone.get('pretrained'):
                        neck_cfg.rfp_backbone.pretrained = None
        elif cfg.model.neck.get('rfp_backbone'):
            if cfg.model.neck.rfp_backbone.get('pretrained'):
                cfg.model.neck.rfp_backbone.pretrained = None

    # in case the test dataset is concatenated
    samples_per_gpu = (cfg.data.get('test_dataloader', {})).get(
        'samples_per_gpu', cfg.data.get('samples_per_gpu', 1))
    if samples_per_gpu > 1:
        cfg = disable_text_recog_aug_test(cfg)
        cfg = replace_image_to_tensor(cfg)

    # init distributed env first, since logger depends on the dist info.
    if args.launcher == 'none':
        cfg.gpu_ids = [args.gpu_id]
        distributed = False
    else:
        distributed = True
        init_dist(args.launcher, **cfg.dist_params)

    # build the dataloader
    dataset = build_dataset(cfg.data.test, dict(test_mode=True))
    # step 1: give default values and override (if exist) from cfg.data
    loader_cfg = {
        **dict(seed=cfg.get('seed'), drop_last=False, dist=distributed),
        **({} if torch.__version__ != 'parrots' else dict(
               prefetch_num=2,
               pin_memory=False,
           )),
        **dict((k, cfg.data[k]) for k in [
                   'workers_per_gpu',
                   'seed',
                   'prefetch_num',
                   'pin_memory',
                   'persistent_workers',
               ] if k in cfg.data)
    }
    test_loader_cfg = {
        **loader_cfg,
        **dict(shuffle=False, drop_last=False),
        **cfg.data.get('test_dataloader', {}),
        **dict(samples_per_gpu=samples_per_gpu)
    }

    data_loader = build_dataloader(dataset, **test_loader_cfg)

    # build the model and load checkpoint
    cfg.model.train_cfg = None
    model = build_detector(cfg.model, test_cfg=cfg.get('test_cfg'))
    model = revert_sync_batchnorm(model)
    fp16_cfg = cfg.get('fp16', None)
    if fp16_cfg is not None:
        wrap_fp16_model(model)
    load_checkpoint(model, args.checkpoint, map_location='cpu')
    if args.fuse_conv_bn:
        model = fuse_conv_bn(model)

    if not distributed:
        model = MMDataParallel(model, device_ids=cfg.gpu_ids)
        is_kie = cfg.model.type in ['SDMGR']
        outputs = single_gpu_test(model, data_loader, args.show, args.show_dir,
                                  is_kie, args.show_score_thr)
    else:
        model = MMDistributedDataParallel(
            model.cuda(),
            device_ids=[torch.cuda.current_device()],
            broadcast_buffers=False)
        outputs = multi_gpu_test(model, data_loader, args.tmpdir,
                                 args.gpu_collect)

    rank, _ = get_dist_info()
    if rank == 0:
        if args.out:
            print(f'\nwriting results to {args.out}')
            mmcv.dump(outputs, args.out)
        kwargs = {} if args.eval_options is None else args.eval_options
        if args.format_only:
            dataset.format_results(outputs, **kwargs)
        if args.eval:
            eval_kwargs = cfg.get('evaluation', {}).copy()
            # hard-code way to remove EvalHook args
            for key in [
                    'interval', 'tmpdir', 'start', 'gpu_collect', 'save_best',
                    'rule'
            ]:
                eval_kwargs.pop(key, None)
            eval_kwargs.update(dict(metric=args.eval, **kwargs))
            print(dataset.evaluate(outputs, **eval_kwargs))


if __name__ == '__main__':
    main()