Spaces:
Runtime error
Runtime error
File size: 1,417 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 |
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import cv2
import torch
from mmocr.apis import init_detector, model_inference
from mmocr.datasets import build_dataset # noqa: F401
from mmocr.models import build_detector # noqa: F401
def parse_args():
parser = argparse.ArgumentParser(description='MMDetection webcam demo.')
parser.add_argument('config', help='Test config file path.')
parser.add_argument('checkpoint', help='Checkpoint file.')
parser.add_argument(
'--device', type=str, default='cuda:0', help='CPU/CUDA device option.')
parser.add_argument(
'--camera-id', type=int, default=0, help='Camera device id.')
parser.add_argument(
'--score-thr', type=float, default=0.5, help='Bbox score threshold.')
args = parser.parse_args()
return args
def main():
args = parse_args()
device = torch.device(args.device)
model = init_detector(args.config, args.checkpoint, device=device)
camera = cv2.VideoCapture(args.camera_id)
print('Press "Esc", "q" or "Q" to exit.')
while True:
ret_val, img = camera.read()
result = model_inference(model, img)
ch = cv2.waitKey(1)
if ch == 27 or ch == ord('q') or ch == ord('Q'):
break
model.show_result(
img, result, score_thr=args.score_thr, wait_time=1, show=True)
if __name__ == '__main__':
main()
|