Spaces:
Runtime error
Runtime error
File size: 27,418 Bytes
2366e36 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 |
# Deployment
We provide deployment tools under `tools/deployment` directory.
## Convert to ONNX (experimental)
We provide a script to convert the model to [ONNX](https://github.com/onnx/onnx) format. The converted model could be visualized by tools like [Netron](https://github.com/lutzroeder/netron). Besides, we also support comparing the output results between PyTorch and ONNX model.
```bash
python tools/deployment/pytorch2onnx.py
${MODEL_CONFIG_PATH} \
${MODEL_CKPT_PATH} \
${MODEL_TYPE} \
${IMAGE_PATH} \
--output-file ${OUTPUT_FILE} \
--device-id ${DEVICE_ID} \
--opset-version ${OPSET_VERSION} \
--verify \
--verbose \
--show \
--dynamic-export
```
Description of arguments:
| ARGS | Type | Description |
| ------------------ | -------------- | -------------------------------------------------------------------------------------------------- |
| `model_config` | str | The path to a model config file. |
| `model_ckpt` | str | The path to a model checkpoint file. |
| `model_type` | 'recog', 'det' | The model type of the config file. |
| `image_path` | str | The path to input image file. |
| `--output-file` | str | The path to output ONNX model. Defaults to `tmp.onnx`. |
| `--device-id` | int | Which GPU to use. Defaults to 0. |
| `--opset-version` | int | ONNX opset version. Defaults to 11. |
| `--verify` | bool | Determines whether to verify the correctness of an exported model. Defaults to `False`. |
| `--verbose` | bool | Determines whether to print the architecture of the exported model. Defaults to `False`. |
| `--show` | bool | Determines whether to visualize outputs of ONNXRuntime and PyTorch. Defaults to `False`. |
| `--dynamic-export` | bool | Determines whether to export ONNX model with dynamic input and output shapes. Defaults to `False`. |
:::{note}
This tool is still experimental. For now, some customized operators are not supported, and we only support a subset of detection and recognition algorithms.
:::
### List of supported models exportable to ONNX
The table below lists the models that are guaranteed to be exportable to ONNX and runnable in ONNX Runtime.
| Model | Config | Dynamic Shape | Batch Inference | Note |
| :----: | :----------------------------------------------------------------------------------------------------------------------------------------------: | :-----------: | :-------------: | :------------------------------------: |
| DBNet | [dbnet_r18_fpnc_1200e_icdar2015.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py) | Y | N | |
| PSENet | [psenet_r50_fpnf_600e_ctw1500.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/psenet/psenet_r50_fpnf_600e_ctw1500.py) | Y | Y | |
| PSENet | [psenet_r50_fpnf_600e_icdar2015.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) | Y | Y | |
| PANet | [panet_r18_fpem_ffm_600e_ctw1500.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_ctw1500.py) | Y | Y | |
| PANet | [panet_r18_fpem_ffm_600e_icdar2015.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py) | Y | Y | |
| CRNN | [crnn_academic_dataset.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textrecog/crnn/crnn_academic_dataset.py) | Y | Y | CRNN only accepts input with height 32 |
:::{note}
- *All models above are tested with PyTorch==1.8.1 and onnxruntime-gpu == 1.8.1*
- If you meet any problem with the listed models above, please create an issue and it would be taken care of soon.
- Because this feature is experimental and may change fast, please always try with the latest `mmcv` and `mmocr`.
:::
## Convert ONNX to TensorRT (experimental)
We also provide a script to convert [ONNX](https://github.com/onnx/onnx) model to [TensorRT](https://github.com/NVIDIA/TensorRT) format. Besides, we support comparing the output results between ONNX and TensorRT model.
```bash
python tools/deployment/onnx2tensorrt.py
${MODEL_CONFIG_PATH} \
${MODEL_TYPE} \
${IMAGE_PATH} \
${ONNX_FILE} \
--trt-file ${OUT_TENSORRT} \
--max-shape INT INT INT INT \
--min-shape INT INT INT INT \
--workspace-size INT \
--fp16 \
--verify \
--show \
--verbose
```
Description of arguments:
| ARGS | Type | Description |
| ------------------ | -------------- | --------------------------------------------------------------------------------------------------- |
| `model_config` | str | The path to a model config file. |
| `model_type` | 'recog', 'det' | The model type of the config file. |
| `image_path` | str | The path to input image file. |
| `onnx_file` | str | The path to input ONNX file. |
| `--trt-file` | str | The path of output TensorRT model. Defaults to `tmp.trt`. |
| `--max-shape` | int * 4 | Maximum shape of model input. |
| `--min-shape` | int * 4 | Minimum shape of model input. |
| `--workspace-size` | int | Max workspace size in GiB. Defaults to 1. |
| `--fp16` | bool | Determines whether to export TensorRT with fp16 mode. Defaults to `False`. |
| `--verify` | bool | Determines whether to verify the correctness of an exported model. Defaults to `False`. |
| `--show` | bool | Determines whether to show the output of ONNX and TensorRT. Defaults to `False`. |
| `--verbose` | bool | Determines whether to verbose logging messages while creating TensorRT engine. Defaults to `False`. |
:::{note}
This tool is still experimental. For now, some customized operators are not supported, and we only support a subset of detection and recognition algorithms.
:::
### List of supported models exportable to TensorRT
The table below lists the models that are guaranteed to be exportable to TensorRT engine and runnable in TensorRT.
| Model | Config | Dynamic Shape | Batch Inference | Note |
| :----: | :----------------------------------------------------------------------------------------------------------------------------------------------: | :-----------: | :-------------: | :------------------------------------: |
| DBNet | [dbnet_r18_fpnc_1200e_icdar2015.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py) | Y | N | |
| PSENet | [psenet_r50_fpnf_600e_ctw1500.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/psenet/psenet_r50_fpnf_600e_ctw1500.py) | Y | Y | |
| PSENet | [psenet_r50_fpnf_600e_icdar2015.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py) | Y | Y | |
| PANet | [panet_r18_fpem_ffm_600e_ctw1500.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_ctw1500.py) | Y | Y | |
| PANet | [panet_r18_fpem_ffm_600e_icdar2015.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py) | Y | Y | |
| CRNN | [crnn_academic_dataset.py](https://github.com/open-mmlab/mmocr/blob/main/configs/textrecog/crnn/crnn_academic_dataset.py) | Y | Y | CRNN only accepts input with height 32 |
:::{note}
- *All models above are tested with PyTorch==1.8.1, onnxruntime-gpu==1.8.1 and tensorrt==7.2.1.6*
- If you meet any problem with the listed models above, please create an issue and it would be taken care of soon.
- Because this feature is experimental and may change fast, please always try with the latest `mmcv` and `mmocr`.
:::
## Evaluate ONNX and TensorRT Models (experimental)
We provide methods to evaluate TensorRT and ONNX models in `tools/deployment/deploy_test.py`.
### Prerequisite
To evaluate ONNX and TensorRT models, ONNX, ONNXRuntime and TensorRT should be installed first. Install `mmcv-full` with ONNXRuntime custom ops and TensorRT plugins follow [ONNXRuntime in mmcv](https://mmcv.readthedocs.io/en/latest/onnxruntime_op.html) and [TensorRT plugin in mmcv](https://github.com/open-mmlab/mmcv/blob/master/docs/tensorrt_plugin.md).
### Usage
```bash
python tools/deploy_test.py \
${CONFIG_FILE} \
${MODEL_PATH} \
${MODEL_TYPE} \
${BACKEND} \
--eval ${METRICS} \
--device ${DEVICE}
```
### Description of all arguments
| ARGS | Type | Description |
| -------------- | ------------------------- | --------------------------------------------------------------------------------------- |
| `model_config` | str | The path to a model config file. |
| `model_file` | str | The path to a TensorRT or an ONNX model file. |
| `model_type` | 'recog', 'det' | Detection or recognition model to deploy. |
| `backend` | 'TensorRT', 'ONNXRuntime' | The backend for testing. |
| `--eval` | 'acc', 'hmean-iou' | The evaluation metrics. 'acc' for recognition models, 'hmean-iou' for detection models. |
| `--device` | str | Device for evaluation. Defaults to `cuda:0`. |
## Results and Models
<table class="tg">
<thead>
<tr>
<th class="tg-9wq8">Model</th>
<th class="tg-9wq8">Config</th>
<th class="tg-9wq8">Dataset</th>
<th class="tg-9wq8">Metric</th>
<th class="tg-9wq8">PyTorch</th>
<th class="tg-9wq8">ONNX Runtime</th>
<th class="tg-9wq8">TensorRT FP32</th>
<th class="tg-9wq8">TensorRT FP16</th>
</tr>
</thead>
<tbody>
<tr>
<td class="tg-9wq8" rowspan="3">DBNet</td>
<td class="tg-9wq8" rowspan="3">dbnet_r18_fpnc_1200e_icdar2015.py<br></td>
<td class="tg-9wq8" rowspan="3">icdar2015</td>
<td class="tg-9wq8"><span style="font-style:normal">Recall</span><br></td>
<td class="tg-9wq8">0.731</td>
<td class="tg-9wq8">0.731</td>
<td class="tg-9wq8">0.678</td>
<td class="tg-9wq8">0.679</td>
</tr>
<tr>
<td class="tg-9wq8">Precision</td>
<td class="tg-9wq8"><span style="font-weight:400;font-style:normal">0.871</span></td>
<td class="tg-9wq8">0.871</td>
<td class="tg-9wq8">0.844</td>
<td class="tg-9wq8">0.842</td>
</tr>
<tr>
<td class="tg-9wq8"><span style="font-style:normal">Hmean</span></td>
<td class="tg-9wq8"><span style="font-weight:400;font-style:normal">0.795</span></td>
<td class="tg-9wq8">0.795</td>
<td class="tg-9wq8">0.752</td>
<td class="tg-9wq8">0.752</td>
</tr>
<tr>
<td class="tg-9wq8" rowspan="3">DBNet*</td>
<td class="tg-9wq8" rowspan="3">dbnet_r18_fpnc_1200e_icdar2015.py<br></td>
<td class="tg-9wq8" rowspan="3">icdar2015</td>
<td class="tg-9wq8"><span style="font-style:normal">Recall</span><br></td>
<td class="tg-9wq8">0.720</td>
<td class="tg-9wq8">0.720</td>
<td class="tg-9wq8">0.720</td>
<td class="tg-9wq8">0.718</td>
</tr>
<tr>
<td class="tg-9wq8">Precision</td>
<td class="tg-9wq8"><span style="font-weight:400;font-style:normal">0.868</span></td>
<td class="tg-9wq8"><span style="font-weight:400;font-style:normal">0.868</span></td>
<td class="tg-9wq8"><span style="font-weight:400;font-style:normal">0.868</span></td>
<td class="tg-9wq8">0.868</td>
</tr>
<tr>
<td class="tg-9wq8"><span style="font-style:normal">Hmean</span></td>
<td class="tg-9wq8"><span style="font-weight:400;font-style:normal">0.787</span></td>
<td class="tg-9wq8"><span style="font-weight:400;font-style:normal">0.787</span></td>
<td class="tg-9wq8"><span style="font-weight:400;font-style:normal">0.787</span></td>
<td class="tg-9wq8">0.786</td>
</tr>
<tr>
<td class="tg-9wq8" rowspan="3">PSENet</td>
<td class="tg-9wq8" rowspan="3">psenet_r50_fpnf_600e_icdar2015.py<br></td>
<td class="tg-9wq8" rowspan="3">icdar2015</td>
<td class="tg-9wq8"><span style="font-style:normal">Recall</span><br></td>
<td class="tg-9wq8">0.753</td>
<td class="tg-9wq8">0.753</td>
<td class="tg-9wq8">0.753</td>
<td class="tg-9wq8">0.752</td>
</tr>
<tr>
<td class="tg-9wq8">Precision</td>
<td class="tg-9wq8">0.867</td>
<td class="tg-9wq8">0.867</td>
<td class="tg-9wq8">0.867</td>
<td class="tg-9wq8">0.867</td>
</tr>
<tr>
<td class="tg-9wq8"><span style="font-style:normal">Hmean</span></td>
<td class="tg-9wq8">0.806</td>
<td class="tg-9wq8">0.806</td>
<td class="tg-9wq8">0.806</td>
<td class="tg-9wq8">0.805</td>
</tr>
<tr>
<td class="tg-9wq8" rowspan="3">PANet</td>
<td class="tg-9wq8" rowspan="3">panet_r18_fpem_ffm_600e_icdar2015.py<br></td>
<td class="tg-9wq8" rowspan="3">icdar2015</td>
<td class="tg-9wq8">Recall<br></td>
<td class="tg-9wq8">0.740</td>
<td class="tg-9wq8">0.740</td>
<td class="tg-9wq8">0.687</td>
<td class="tg-9wq8">N/A</td>
</tr>
<tr>
<td class="tg-9wq8">Precision</td>
<td class="tg-9wq8">0.860</td>
<td class="tg-9wq8">0.860</td>
<td class="tg-9wq8">0.815</td>
<td class="tg-9wq8">N/A</td>
</tr>
<tr>
<td class="tg-9wq8">Hmean</td>
<td class="tg-9wq8">0.796</td>
<td class="tg-9wq8">0.796</td>
<td class="tg-9wq8">0.746</td>
<td class="tg-9wq8">N/A</td>
</tr>
<tr>
<td class="tg-nrix" rowspan="3">PANet*</td>
<td class="tg-nrix" rowspan="3">panet_r18_fpem_ffm_600e_icdar2015.py<br></td>
<td class="tg-nrix" rowspan="3">icdar2015</td>
<td class="tg-nrix">Recall<br></td>
<td class="tg-nrix">0.736</td>
<td class="tg-nrix">0.736</td>
<td class="tg-nrix">0.736</td>
<td class="tg-nrix">N/A</td>
</tr>
<tr>
<td class="tg-nrix">Precision</td>
<td class="tg-nrix">0.857</td>
<td class="tg-nrix">0.857</td>
<td class="tg-nrix">0.857</td>
<td class="tg-nrix">N/A</td>
</tr>
<tr>
<td class="tg-nrix">Hmean</td>
<td class="tg-nrix">0.792</td>
<td class="tg-nrix">0.792</td>
<td class="tg-nrix">0.792</td>
<td class="tg-nrix">N/A</td>
</tr>
<tr>
<td class="tg-9wq8">CRNN</td>
<td class="tg-9wq8">crnn_academic_dataset.py<br></td>
<td class="tg-9wq8">IIIT5K</td>
<td class="tg-9wq8">Acc</td>
<td class="tg-9wq8">0.806</td>
<td class="tg-9wq8">0.806</td>
<td class="tg-9wq8">0.806</td>
<td class="tg-9wq8">0.806</td>
</tr>
</tbody>
</table>
:::{note}
- TensorRT upsampling operation is a little different from PyTorch. For DBNet and PANet, we suggest replacing upsampling operations with the nearest mode to operations with bilinear mode. [Here](https://github.com/open-mmlab/mmocr/blob/50a25e718a028c8b9d96f497e241767dbe9617d1/mmocr/models/textdet/necks/fpem_ffm.py#L33) for PANet, [here](https://github.com/open-mmlab/mmocr/blob/50a25e718a028c8b9d96f497e241767dbe9617d1/mmocr/models/textdet/necks/fpn_cat.py#L111) and [here](https://github.com/open-mmlab/mmocr/blob/50a25e718a028c8b9d96f497e241767dbe9617d1/mmocr/models/textdet/necks/fpn_cat.py#L121) for DBNet. As is shown in the above table, networks with tag * mean the upsampling mode is changed.
- Note that changing upsampling mode reduces less performance compared with using the nearest mode. However, the weights of networks are trained through the nearest mode. To pursue the best performance, using bilinear mode for both training and TensorRT deployment is recommended.
- All ONNX and TensorRT models are evaluated with dynamic shapes on the datasets, and images are preprocessed according to the original config file.
- This tool is still experimental, and we only support a subset of detection and recognition algorithms for now.
:::
## C++ Inference example with OpenCV
The example below is tested with Visual Studio 2019 as console application, CPU inference only.
### Prerequisites
1. Project should use OpenCV (tested with version 4.5.4), ONNX Runtime NuGet package (version 1.9.0).
2. Download *DBNet_r18* detector and *SATRN_small* recognizer models from our [Model Zoo](modelzoo.md), and export them with the following python commands (you may change the paths accordingly):
```bash
python3.9 ../mmocr/tools/deployment/pytorch2onnx.py --verify --output-file detector.onnx ../mmocr/configs/textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py ./dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth --dynamic-export det ./sample_big_image_eg_1920x1080.png
python3.9 ../mmocr/tools/deployment/pytorch2onnx.py --opset 14 --verify --output-file recognizer.onnx ../mmocr/configs/textrecog/satrn/satrn_small.py ./satrn_small_20211009-2cf13355.pth recog ./sample_small_image_eg_200x50.png
```
:::{note}
- Be aware, while exported `detector.onnx` file is relatively small (about 50 Mb), `recognizer.onnx` is pretty big (more than 600 Mb).
- *DBNet_r18* can use ONNX opset 11, *SATRN_small* can be exported with opset 14.
:::
:::{warning}
Be sure, that verifications of both models are successful - look through the export messages.
:::
### Example
Example usage of exported models with C++ is in the code below (don't forget to change paths to \*.onnx files). It's applicable to these two models only, other models have another preprocessing and postprocessing logics.
```C++
#include <iostream>
#include <opencv2/core/core.hpp>
#include <opencv2/highgui.hpp>
#include <opencv2/imgproc.hpp>
#include <opencv2/dnn.hpp>
#include <onnxruntime_cxx_api.h>
#pragma comment(lib, "onnxruntime.lib")
// DB_r18
class Detector {
public:
Detector(const std::string& model_path) {
session = Ort::Session{ env, std::wstring(model_path.begin(), model_path.end()).c_str(), Ort::SessionOptions{nullptr} };
}
std::vector<cv::Rect> inference(const cv::Mat& original, float threshold = 0.3f) {
cv::Size original_size = original.size();
const char* input_names[] = { "input" };
const char* output_names[] = { "output" };
std::array<int64_t, 4> input_shape{ 1, 3, height, width };
cv::Mat image = cv::Mat::zeros(cv::Size(width, height), original.type());
cv::resize(original, image, cv::Size(width, height), 0, 0, cv::INTER_AREA);
image.convertTo(image, CV_32FC3);
cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
image = (image - cv::Scalar(123.675f, 116.28f, 103.53f)) / cv::Scalar(58.395f, 57.12f, 57.375f);
cv::Mat blob = cv::dnn::blobFromImage(image);
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, (float*)blob.data, blob.total(), input_shape.data(), input_shape.size());
std::vector<Ort::Value> output_tensor = session.Run(Ort::RunOptions{ nullptr }, input_names, &input_tensor, 1, output_names, 1);
int sizes[] = { 1, 3, height, width };
cv::Mat output(4, sizes, CV_32F, output_tensor.front().GetTensorMutableData<float>());
std::vector<cv::Mat> images;
cv::dnn::imagesFromBlob(output, images);
std::vector<cv::Rect> areas = get_detected(images[0], threshold);
std::vector<cv::Rect> results;
float x_ratio = original_size.width / (float)width;
float y_ratio = original_size.height / (float)height;
for (int index = 0; index < areas.size(); ++index) {
cv::Rect box = areas[index];
box.x = int(box.x * x_ratio);
box.width = int(box.width * x_ratio);
box.y = int(box.y * y_ratio);
box.height = int(box.height * y_ratio);
results.push_back(box);
}
return results;
}
private:
Ort::Env env;
Ort::Session session{ nullptr };
const int width = 1312, height = 736;
cv::Rect expand_box(const cv::Rect& original, int addition = 5) {
cv::Rect box(original);
box.x = std::max(0, box.x - addition);
box.y = std::max(0, box.y - addition);
box.width = (box.x + box.width + addition * 2 > width) ? (width - box.x) : (box.width + addition * 2);
box.height = (box.y + box.height + addition * 2) > height ? (height - box.y) : (box.height + addition * 2);
return box;
}
std::vector<cv::Rect> get_detected(const cv::Mat& output, float threshold) {
cv::Mat text_mask = cv::Mat::zeros(height, width, CV_32F);
std::vector<cv::Mat> maps;
cv::split(output, maps);
cv::Mat proba_map = maps[0];
cv::threshold(proba_map, text_mask, threshold, 1.0f, cv::THRESH_BINARY);
cv::multiply(text_mask, 255, text_mask);
text_mask.convertTo(text_mask, CV_8U);
std::vector<std::vector<cv::Point>> contours;
cv::findContours(text_mask, contours, cv::RETR_EXTERNAL, cv::CHAIN_APPROX_SIMPLE);
std::vector<cv::Rect> boxes;
for (int index = 0; index < contours.size(); ++index) {
cv::Rect box = expand_box(cv::boundingRect(contours[index]));
boxes.push_back(box);
}
return boxes;
}
};
// SATRN_small
class Recognizer {
public:
Recognizer(const std::string& model_path) {
session = Ort::Session{ env, std::wstring(model_path.begin(), model_path.end()).c_str(), Ort::SessionOptions{nullptr} };
}
std::string inference(const cv::Mat& original) {
const char* input_names[] = { "input" };
const char* output_names[] = { "output" };
std::array<int64_t, 4> input_shape{ 1, 3, height, width };
cv::Mat image;
cv::resize(original, image, cv::Size(width, height), 0, 0, cv::INTER_AREA);
image.convertTo(image, CV_32FC3);
cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
image = (image / 255.0f - cv::Scalar(0.485f, 0.456f, 0.406f)) / cv::Scalar(0.229f, 0.224f, 0.225f);
cv::Mat blob = cv::dnn::blobFromImage(image);
auto memory_info = Ort::MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeDefault);
Ort::Value input_tensor = Ort::Value::CreateTensor<float>(memory_info, (float*)blob.data, blob.total(), input_shape.data(), input_shape.size());
std::vector<Ort::Value> output_tensor = session.Run(Ort::RunOptions{ nullptr }, input_names, &input_tensor, 1, output_names, 1);
int sequence_length = 25;
std::string dictionary = "0123456789abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ!\"#$%&'()*+,-./:;<=>?@[\\]_`~";
int characters = dictionary.length() + 2; // EOS + UNK
std::vector<int> max_indices;
for (int outer = 0; outer < sequence_length; ++outer) {
int character_index = -1;
float character_value = 0;
for (int inner = 0; inner < characters; ++inner) {
int counter = outer * characters + inner;
float value = output_tensor[0].GetTensorMutableData<float>()[counter];
if (value > character_value) {
character_value = value;
character_index = inner;
}
}
max_indices.push_back(character_index);
}
std::string recognized;
for (int index = 0; index < max_indices.size(); ++index) {
if (max_indices[index] == dictionary.length()) {
continue; // unk
}
if (max_indices[index] == dictionary.length() + 1) {
break; // eos
}
recognized += dictionary[max_indices[index]];
}
return recognized;
}
private:
Ort::Env env;
Ort::Session session{ nullptr };
const int height = 32;
const int width = 100;
};
int main(int argc, const char* argv[]) {
if (argc < 2) {
std::cout << "Usage: this_executable.exe c:/path/to/image.png" << std::endl;
return 0;
}
std::chrono::steady_clock::time_point begin = std::chrono::steady_clock::now();
std::cout << "Loading models..." << std::endl;
Detector detector("d:/path/to/detector.onnx");
Recognizer recognizer("d:/path/to/recognizer.onnx");
std::chrono::steady_clock::time_point end = std::chrono::steady_clock::now();
std::cout << "Loading models done in " << std::chrono::duration_cast<std::chrono::milliseconds>(end - begin).count() << " ms" << std::endl;
cv::Mat image = cv::imread(argv[1], cv::IMREAD_COLOR);
begin = std::chrono::steady_clock::now();
std::vector<cv::Rect> detections = detector.inference(image);
for (int index = 0; index < detections.size(); ++index) {
cv::Mat roi = image(detections[index]);
std::string text = recognizer.inference(roi);
cv::rectangle(image, detections[index], cv::Scalar(255, 255, 255), 2);
cv::putText(image, text, cv::Point(detections[index].x, detections[index].y - 10), cv::FONT_HERSHEY_COMPLEX, 0.4, cv::Scalar(255, 255, 255));
}
end = std::chrono::steady_clock::now();
std::cout << "Inference time (with drawing): " << std::chrono::duration_cast<std::chrono::milliseconds>(end - begin).count() << " ms" << std::endl;
cv::imshow("Results", image);
cv::waitKey(0);
return 0;
}
```
The output should look something like this.
```
Loading models...
Loading models done in 5715 ms
Inference time (with drawing): 3349 ms
```
And the sample result should look something like this.
![resultspng](https://user-images.githubusercontent.com/93123994/142095495-40400ec9-875e-403d-98fa-0a52da385269.png)
|