MMOCR / tests /test_models /test_ocr_decoder.py
tomofi's picture
Add application file
2366e36
raw
history blame
4.84 kB
# Copyright (c) OpenMMLab. All rights reserved.
import math
import pytest
import torch
from mmocr.models.textrecog.decoders import (ABILanguageDecoder,
ABIVisionDecoder, BaseDecoder,
NRTRDecoder, ParallelSARDecoder,
ParallelSARDecoderWithBS,
SequentialSARDecoder)
from mmocr.models.textrecog.decoders.sar_decoder_with_bs import DecodeNode
def _create_dummy_input():
feat = torch.rand(1, 512, 4, 40)
out_enc = torch.rand(1, 512)
tgt_dict = {'padded_targets': torch.LongTensor([[1, 1, 1, 1, 36]])}
img_metas = [{'valid_ratio': 1.0}]
return feat, out_enc, tgt_dict, img_metas
def test_base_decoder():
decoder = BaseDecoder()
with pytest.raises(NotImplementedError):
decoder.forward_train(None, None, None, None)
with pytest.raises(NotImplementedError):
decoder.forward_test(None, None, None)
def test_parallel_sar_decoder():
# test parallel sar decoder
decoder = ParallelSARDecoder(num_classes=37, padding_idx=36, max_seq_len=5)
decoder.init_weights()
decoder.train()
feat, out_enc, tgt_dict, img_metas = _create_dummy_input()
with pytest.raises(AssertionError):
decoder(feat, out_enc, tgt_dict, [], True)
with pytest.raises(AssertionError):
decoder(feat, out_enc, tgt_dict, img_metas * 2, True)
out_train = decoder(feat, out_enc, tgt_dict, img_metas, True)
assert out_train.shape == torch.Size([1, 5, 36])
out_test = decoder(feat, out_enc, tgt_dict, img_metas, False)
assert out_test.shape == torch.Size([1, 5, 36])
def test_sequential_sar_decoder():
# test parallel sar decoder
decoder = SequentialSARDecoder(
num_classes=37, padding_idx=36, max_seq_len=5)
decoder.init_weights()
decoder.train()
feat, out_enc, tgt_dict, img_metas = _create_dummy_input()
with pytest.raises(AssertionError):
decoder(feat, out_enc, tgt_dict, [])
with pytest.raises(AssertionError):
decoder(feat, out_enc, tgt_dict, img_metas * 2)
out_train = decoder(feat, out_enc, tgt_dict, img_metas, True)
assert out_train.shape == torch.Size([1, 5, 36])
out_test = decoder(feat, out_enc, tgt_dict, img_metas, False)
assert out_test.shape == torch.Size([1, 5, 36])
def test_parallel_sar_decoder_with_beam_search():
with pytest.raises(AssertionError):
ParallelSARDecoderWithBS(beam_width='beam')
with pytest.raises(AssertionError):
ParallelSARDecoderWithBS(beam_width=0)
feat, out_enc, tgt_dict, img_metas = _create_dummy_input()
decoder = ParallelSARDecoderWithBS(
beam_width=1, num_classes=37, padding_idx=36, max_seq_len=5)
decoder.init_weights()
decoder.train()
with pytest.raises(AssertionError):
decoder(feat, out_enc, tgt_dict, [])
with pytest.raises(AssertionError):
decoder(feat, out_enc, tgt_dict, img_metas * 2)
out_test = decoder(feat, out_enc, tgt_dict, img_metas, train_mode=False)
assert out_test.shape == torch.Size([1, 5, 36])
# test decodenode
with pytest.raises(AssertionError):
DecodeNode(1, 1)
with pytest.raises(AssertionError):
DecodeNode([1, 2], ['4', '3'])
with pytest.raises(AssertionError):
DecodeNode([1, 2], [0.5])
decode_node = DecodeNode([1, 2], [0.7, 0.8])
assert math.isclose(decode_node.eval(), 1.5)
def test_transformer_decoder():
decoder = NRTRDecoder(num_classes=37, padding_idx=36, max_seq_len=5)
decoder.init_weights()
decoder.train()
out_enc = torch.rand(1, 25, 512)
tgt_dict = {'padded_targets': torch.LongTensor([[1, 1, 1, 1, 36]])}
img_metas = [{'valid_ratio': 1.0}]
tgt_dict['padded_targets'] = tgt_dict['padded_targets']
out_train = decoder(None, out_enc, tgt_dict, img_metas, True)
assert out_train.shape == torch.Size([1, 5, 36])
out_test = decoder(None, out_enc, tgt_dict, img_metas, False)
assert out_test.shape == torch.Size([1, 5, 36])
def test_abi_language_decoder():
decoder = ABILanguageDecoder(max_seq_len=25)
logits = torch.randn(2, 25, 90)
result = decoder(
feat=None, out_enc=logits, targets_dict=None, img_metas=None)
assert result['feature'].shape == torch.Size([2, 25, 512])
assert result['logits'].shape == torch.Size([2, 25, 90])
def test_abi_vision_decoder():
model = ABIVisionDecoder(
in_channels=128, num_channels=16, max_seq_len=10, use_result=None)
x = torch.randn(2, 128, 8, 32)
result = model(x, None)
assert result['feature'].shape == torch.Size([2, 10, 128])
assert result['logits'].shape == torch.Size([2, 10, 90])
assert result['attn_scores'].shape == torch.Size([2, 10, 8, 32])