Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from mmocr.models.builder import build_activation_layer | |
class ScaledDotProductAttention(nn.Module): | |
"""Scaled Dot-Product Attention Module. This code is adopted from | |
https://github.com/jadore801120/attention-is-all-you-need-pytorch. | |
Args: | |
temperature (float): The scale factor for softmax input. | |
attn_dropout (float): Dropout layer on attn_output_weights. | |
""" | |
def __init__(self, temperature, attn_dropout=0.1): | |
super().__init__() | |
self.temperature = temperature | |
self.dropout = nn.Dropout(attn_dropout) | |
def forward(self, q, k, v, mask=None): | |
attn = torch.matmul(q / self.temperature, k.transpose(2, 3)) | |
if mask is not None: | |
attn = attn.masked_fill(mask == 0, float('-inf')) | |
attn = self.dropout(F.softmax(attn, dim=-1)) | |
output = torch.matmul(attn, v) | |
return output, attn | |
class MultiHeadAttention(nn.Module): | |
"""Multi-Head Attention module. | |
Args: | |
n_head (int): The number of heads in the | |
multiheadattention models (default=8). | |
d_model (int): The number of expected features | |
in the decoder inputs (default=512). | |
d_k (int): Total number of features in key. | |
d_v (int): Total number of features in value. | |
dropout (float): Dropout layer on attn_output_weights. | |
qkv_bias (bool): Add bias in projection layer. Default: False. | |
""" | |
def __init__(self, | |
n_head=8, | |
d_model=512, | |
d_k=64, | |
d_v=64, | |
dropout=0.1, | |
qkv_bias=False): | |
super().__init__() | |
self.n_head = n_head | |
self.d_k = d_k | |
self.d_v = d_v | |
self.dim_k = n_head * d_k | |
self.dim_v = n_head * d_v | |
self.linear_q = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias) | |
self.linear_k = nn.Linear(self.dim_k, self.dim_k, bias=qkv_bias) | |
self.linear_v = nn.Linear(self.dim_v, self.dim_v, bias=qkv_bias) | |
self.attention = ScaledDotProductAttention(d_k**0.5, dropout) | |
self.fc = nn.Linear(self.dim_v, d_model, bias=qkv_bias) | |
self.proj_drop = nn.Dropout(dropout) | |
def forward(self, q, k, v, mask=None): | |
batch_size, len_q, _ = q.size() | |
_, len_k, _ = k.size() | |
q = self.linear_q(q).view(batch_size, len_q, self.n_head, self.d_k) | |
k = self.linear_k(k).view(batch_size, len_k, self.n_head, self.d_k) | |
v = self.linear_v(v).view(batch_size, len_k, self.n_head, self.d_v) | |
q, k, v = q.transpose(1, 2), k.transpose(1, 2), v.transpose(1, 2) | |
if mask is not None: | |
if mask.dim() == 3: | |
mask = mask.unsqueeze(1) | |
elif mask.dim() == 2: | |
mask = mask.unsqueeze(1).unsqueeze(1) | |
attn_out, _ = self.attention(q, k, v, mask=mask) | |
attn_out = attn_out.transpose(1, 2).contiguous().view( | |
batch_size, len_q, self.dim_v) | |
attn_out = self.fc(attn_out) | |
attn_out = self.proj_drop(attn_out) | |
return attn_out | |
class PositionwiseFeedForward(nn.Module): | |
"""Two-layer feed-forward module. | |
Args: | |
d_in (int): The dimension of the input for feedforward | |
network model. | |
d_hid (int): The dimension of the feedforward | |
network model. | |
dropout (float): Dropout layer on feedforward output. | |
act_cfg (dict): Activation cfg for feedforward module. | |
""" | |
def __init__(self, d_in, d_hid, dropout=0.1, act_cfg=dict(type='Relu')): | |
super().__init__() | |
self.w_1 = nn.Linear(d_in, d_hid) | |
self.w_2 = nn.Linear(d_hid, d_in) | |
self.act = build_activation_layer(act_cfg) | |
self.dropout = nn.Dropout(dropout) | |
def forward(self, x): | |
x = self.w_1(x) | |
x = self.act(x) | |
x = self.w_2(x) | |
x = self.dropout(x) | |
return x | |
class PositionalEncoding(nn.Module): | |
"""Fixed positional encoding with sine and cosine functions.""" | |
def __init__(self, d_hid=512, n_position=200, dropout=0): | |
super().__init__() | |
self.dropout = nn.Dropout(p=dropout) | |
# Not a parameter | |
# Position table of shape (1, n_position, d_hid) | |
self.register_buffer( | |
'position_table', | |
self._get_sinusoid_encoding_table(n_position, d_hid)) | |
def _get_sinusoid_encoding_table(self, n_position, d_hid): | |
"""Sinusoid position encoding table.""" | |
denominator = torch.Tensor([ | |
1.0 / np.power(10000, 2 * (hid_j // 2) / d_hid) | |
for hid_j in range(d_hid) | |
]) | |
denominator = denominator.view(1, -1) | |
pos_tensor = torch.arange(n_position).unsqueeze(-1).float() | |
sinusoid_table = pos_tensor * denominator | |
sinusoid_table[:, 0::2] = torch.sin(sinusoid_table[:, 0::2]) | |
sinusoid_table[:, 1::2] = torch.cos(sinusoid_table[:, 1::2]) | |
return sinusoid_table.unsqueeze(0) | |
def forward(self, x): | |
""" | |
Args: | |
x (Tensor): Tensor of shape (batch_size, pos_len, d_hid, ...) | |
""" | |
self.device = x.device | |
x = x + self.position_table[:, :x.size(1)].clone().detach() | |
return self.dropout(x) | |