Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torch.nn import init | |
class MeanAggregator(nn.Module): | |
def forward(self, features, A): | |
x = torch.bmm(A, features) | |
return x | |
class GraphConv(nn.Module): | |
def __init__(self, in_dim, out_dim): | |
super().__init__() | |
self.in_dim = in_dim | |
self.out_dim = out_dim | |
self.weight = nn.Parameter(torch.FloatTensor(in_dim * 2, out_dim)) | |
self.bias = nn.Parameter(torch.FloatTensor(out_dim)) | |
init.xavier_uniform_(self.weight) | |
init.constant_(self.bias, 0) | |
self.aggregator = MeanAggregator() | |
def forward(self, features, A): | |
b, n, d = features.shape | |
assert d == self.in_dim | |
agg_feats = self.aggregator(features, A) | |
cat_feats = torch.cat([features, agg_feats], dim=2) | |
out = torch.einsum('bnd,df->bnf', cat_feats, self.weight) | |
out = F.relu(out + self.bias) | |
return out | |
class GCN(nn.Module): | |
"""Graph convolutional network for clustering. This was from repo | |
https://github.com/Zhongdao/gcn_clustering licensed under the MIT license. | |
Args: | |
feat_len(int): The input node feature length. | |
""" | |
def __init__(self, feat_len): | |
super(GCN, self).__init__() | |
self.bn0 = nn.BatchNorm1d(feat_len, affine=False).float() | |
self.conv1 = GraphConv(feat_len, 512) | |
self.conv2 = GraphConv(512, 256) | |
self.conv3 = GraphConv(256, 128) | |
self.conv4 = GraphConv(128, 64) | |
self.classifier = nn.Sequential( | |
nn.Linear(64, 32), nn.PReLU(32), nn.Linear(32, 2)) | |
def forward(self, x, A, knn_inds): | |
num_local_graphs, num_max_nodes, feat_len = x.shape | |
x = x.view(-1, feat_len) | |
x = self.bn0(x) | |
x = x.view(num_local_graphs, num_max_nodes, feat_len) | |
x = self.conv1(x, A) | |
x = self.conv2(x, A) | |
x = self.conv3(x, A) | |
x = self.conv4(x, A) | |
k = knn_inds.size(-1) | |
mid_feat_len = x.size(-1) | |
edge_feat = torch.zeros((num_local_graphs, k, mid_feat_len), | |
device=x.device) | |
for graph_ind in range(num_local_graphs): | |
edge_feat[graph_ind, :, :] = x[graph_ind, knn_inds[graph_ind]] | |
edge_feat = edge_feat.view(-1, mid_feat_len) | |
pred = self.classifier(edge_feat) | |
return pred | |