MMOCR / tests /test_core /test_deploy_utils.py
tomofi's picture
Add application file
2366e36
raw
history blame
7.59 kB
# Copyright (c) OpenMMLab. All rights reserved.
import tempfile
from functools import partial
import mmcv
import numpy as np
import pytest
import torch
from packaging import version
from mmocr.core.deployment import (ONNXRuntimeDetector, ONNXRuntimeRecognizer,
TensorRTDetector, TensorRTRecognizer)
from mmocr.models import build_detector
@pytest.mark.skipif(torch.__version__ == 'parrots', reason='skip parrots.')
@pytest.mark.skipif(
version.parse(torch.__version__) < version.parse('1.4.0'),
reason='skip if torch=1.3.x')
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='skip if on cpu device')
def test_detector_wrapper():
try:
import onnxruntime as ort # noqa: F401
import tensorrt as trt
from mmcv.tensorrt import onnx2trt, save_trt_engine
except ImportError:
pytest.skip('ONNXRuntime or TensorRT is not available.')
cfg = dict(
model=dict(
type='DBNet',
backbone=dict(
type='ResNet',
depth=18,
num_stages=4,
out_indices=(0, 1, 2, 3),
frozen_stages=-1,
norm_cfg=dict(type='BN', requires_grad=True),
init_cfg=dict(
type='Pretrained', checkpoint='torchvision://resnet18'),
norm_eval=False,
style='caffe'),
neck=dict(
type='FPNC',
in_channels=[64, 128, 256, 512],
lateral_channels=256),
bbox_head=dict(
type='DBHead',
text_repr_type='quad',
in_channels=256,
loss=dict(type='DBLoss', alpha=5.0, beta=10.0,
bbce_loss=True)),
train_cfg=None,
test_cfg=None))
cfg = mmcv.Config(cfg)
pytorch_model = build_detector(cfg.model, None, None)
# prepare data
inputs = torch.rand(1, 3, 224, 224)
img_metas = [{
'img_shape': [1, 3, 224, 224],
'ori_shape': [1, 3, 224, 224],
'pad_shape': [1, 3, 224, 224],
'filename': None,
'scale_factor': np.array([1, 1, 1, 1])
}]
pytorch_model.forward = pytorch_model.forward_dummy
with tempfile.TemporaryDirectory() as tmpdirname:
onnx_path = f'{tmpdirname}/tmp.onnx'
with torch.no_grad():
torch.onnx.export(
pytorch_model,
inputs,
onnx_path,
input_names=['input'],
output_names=['output'],
export_params=True,
keep_initializers_as_inputs=False,
verbose=False,
opset_version=11)
# TensorRT part
def get_GiB(x: int):
"""return x GiB."""
return x * (1 << 30)
trt_path = onnx_path.replace('.onnx', '.trt')
min_shape = [1, 3, 224, 224]
max_shape = [1, 3, 224, 224]
# create trt engine and wrapper
opt_shape_dict = {'input': [min_shape, min_shape, max_shape]}
max_workspace_size = get_GiB(1)
trt_engine = onnx2trt(
onnx_path,
opt_shape_dict,
log_level=trt.Logger.ERROR,
fp16_mode=False,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_path)
print(f'Successfully created TensorRT engine: {trt_path}')
wrap_onnx = ONNXRuntimeDetector(onnx_path, cfg, 0)
wrap_trt = TensorRTDetector(trt_path, cfg, 0)
assert isinstance(wrap_onnx, ONNXRuntimeDetector)
assert isinstance(wrap_trt, TensorRTDetector)
with torch.no_grad():
onnx_outputs = wrap_onnx.simple_test(inputs, img_metas, rescale=False)
trt_outputs = wrap_onnx.simple_test(inputs, img_metas, rescale=False)
assert isinstance(onnx_outputs[0], dict)
assert isinstance(trt_outputs[0], dict)
assert 'boundary_result' in onnx_outputs[0]
assert 'boundary_result' in trt_outputs[0]
@pytest.mark.skipif(torch.__version__ == 'parrots', reason='skip parrots.')
@pytest.mark.skipif(
version.parse(torch.__version__) < version.parse('1.4.0'),
reason='skip if torch=1.3.x')
@pytest.mark.skipif(
not torch.cuda.is_available(), reason='skip if on cpu device')
def test_recognizer_wrapper():
try:
import onnxruntime as ort # noqa: F401
import tensorrt as trt
from mmcv.tensorrt import onnx2trt, save_trt_engine
except ImportError:
pytest.skip('ONNXRuntime or TensorRT is not available.')
cfg = dict(
label_convertor=dict(
type='CTCConvertor',
dict_type='DICT36',
with_unknown=False,
lower=True),
model=dict(
type='CRNNNet',
preprocessor=None,
backbone=dict(
type='VeryDeepVgg', leaky_relu=False, input_channels=1),
encoder=None,
decoder=dict(type='CRNNDecoder', in_channels=512, rnn_flag=True),
loss=dict(type='CTCLoss'),
label_convertor=dict(
type='CTCConvertor',
dict_type='DICT36',
with_unknown=False,
lower=True),
pretrained=None),
train_cfg=None,
test_cfg=None)
cfg = mmcv.Config(cfg)
pytorch_model = build_detector(cfg.model, None, None)
# prepare data
inputs = torch.rand(1, 1, 32, 32)
img_metas = [{
'img_shape': [1, 1, 32, 32],
'ori_shape': [1, 1, 32, 32],
'pad_shape': [1, 1, 32, 32],
'filename': None,
'scale_factor': np.array([1, 1, 1, 1])
}]
pytorch_model.forward = partial(
pytorch_model.forward,
img_metas=img_metas,
return_loss=False,
rescale=True)
with tempfile.TemporaryDirectory() as tmpdirname:
onnx_path = f'{tmpdirname}/tmp.onnx'
with torch.no_grad():
torch.onnx.export(
pytorch_model,
inputs,
onnx_path,
input_names=['input'],
output_names=['output'],
export_params=True,
keep_initializers_as_inputs=False,
verbose=False,
opset_version=11)
# TensorRT part
def get_GiB(x: int):
"""return x GiB."""
return x * (1 << 30)
trt_path = onnx_path.replace('.onnx', '.trt')
min_shape = [1, 1, 32, 32]
max_shape = [1, 1, 32, 32]
# create trt engine and wrapper
opt_shape_dict = {'input': [min_shape, min_shape, max_shape]}
max_workspace_size = get_GiB(1)
trt_engine = onnx2trt(
onnx_path,
opt_shape_dict,
log_level=trt.Logger.ERROR,
fp16_mode=False,
max_workspace_size=max_workspace_size)
save_trt_engine(trt_engine, trt_path)
print(f'Successfully created TensorRT engine: {trt_path}')
wrap_onnx = ONNXRuntimeRecognizer(onnx_path, cfg, 0)
wrap_trt = TensorRTRecognizer(trt_path, cfg, 0)
assert isinstance(wrap_onnx, ONNXRuntimeRecognizer)
assert isinstance(wrap_trt, TensorRTRecognizer)
with torch.no_grad():
onnx_outputs = wrap_onnx.simple_test(inputs, img_metas, rescale=False)
trt_outputs = wrap_onnx.simple_test(inputs, img_metas, rescale=False)
assert isinstance(onnx_outputs[0], dict)
assert isinstance(trt_outputs[0], dict)
assert 'text' in onnx_outputs[0]
assert 'text' in trt_outputs[0]