MMOCR / tests /test_models /test_detector.py
tomofi's picture
Add application file
2366e36
raw
history blame
16.9 kB
# Copyright (c) OpenMMLab. All rights reserved.
"""pytest tests/test_detector.py."""
import copy
import tempfile
from functools import partial
from os.path import dirname, exists, join
import numpy as np
import pytest
import torch
from mmocr.utils import revert_sync_batchnorm
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300),
num_items=None, num_classes=1): # yapf: disable
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple): Input batch dimensions.
num_items (None | list[int]): Specifies the number of boxes
for each batch item.
num_classes (int): Number of distinct labels a box might have.
"""
from mmdet.core import BitmapMasks
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
img_metas = [{
'img_shape': (H, W, C),
'ori_shape': (H, W, C),
'pad_shape': (H, W, C),
'filename': '<demo>.png',
'scale_factor': np.array([1, 1, 1, 1]),
'flip': False,
} for _ in range(N)]
gt_bboxes = []
gt_labels = []
gt_masks = []
gt_kernels = []
gt_effective_mask = []
for batch_idx in range(N):
if num_items is None:
num_boxes = rng.randint(1, 10)
else:
num_boxes = num_items[batch_idx]
cx, cy, bw, bh = rng.rand(num_boxes, 4).T
tl_x = ((cx * W) - (W * bw / 2)).clip(0, W)
tl_y = ((cy * H) - (H * bh / 2)).clip(0, H)
br_x = ((cx * W) + (W * bw / 2)).clip(0, W)
br_y = ((cy * H) + (H * bh / 2)).clip(0, H)
boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T
class_idxs = [0] * num_boxes
gt_bboxes.append(torch.FloatTensor(boxes))
gt_labels.append(torch.LongTensor(class_idxs))
kernels = []
for kernel_inx in range(num_kernels):
kernel = np.random.rand(H, W)
kernels.append(kernel)
gt_kernels.append(BitmapMasks(kernels, H, W))
gt_effective_mask.append(BitmapMasks([np.ones((H, W))], H, W))
mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8)
gt_masks.append(BitmapMasks(mask, H, W))
mm_inputs = {
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
'img_metas': img_metas,
'gt_bboxes': gt_bboxes,
'gt_labels': gt_labels,
'gt_bboxes_ignore': None,
'gt_masks': gt_masks,
'gt_kernels': gt_kernels,
'gt_mask': gt_effective_mask,
'gt_thr_mask': gt_effective_mask,
'gt_text_mask': gt_effective_mask,
'gt_center_region_mask': gt_effective_mask,
'gt_radius_map': gt_kernels,
'gt_sin_map': gt_kernels,
'gt_cos_map': gt_kernels,
}
return mm_inputs
def _get_config_directory():
"""Find the predefined detector config directory."""
try:
# Assume we are running in the source mmocr repo
repo_dpath = dirname(dirname(dirname(__file__)))
except NameError:
# For IPython development when this __file__ is not defined
import mmocr
repo_dpath = dirname(dirname(mmocr.__file__))
config_dpath = join(repo_dpath, 'configs')
if not exists(config_dpath):
raise Exception('Cannot find config path')
return config_dpath
def _get_config_module(fname):
"""Load a configuration as a python module."""
from mmcv import Config
config_dpath = _get_config_directory()
config_fpath = join(config_dpath, fname)
config_mod = Config.fromfile(config_fpath)
return config_mod
def _get_detector_cfg(fname):
"""Grab configs necessary to create a detector.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
return model
@pytest.mark.parametrize('cfg_file', [
'textdet/maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py',
'textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py',
'textdet/maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py'
])
def test_ocr_mask_rcnn(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
from mmocr.models import build_detector
detector = build_detector(model)
input_shape = (1, 3, 224, 224)
mm_inputs = _demo_mm_inputs(0, input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_labels = mm_inputs.pop('gt_labels')
gt_masks = mm_inputs.pop('gt_masks')
# Test forward train
gt_bboxes = mm_inputs['gt_bboxes']
losses = detector.forward(
imgs,
img_metas,
gt_bboxes=gt_bboxes,
gt_labels=gt_labels,
gt_masks=gt_masks)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test show_result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)
@pytest.mark.parametrize('cfg_file', [
'textdet/panet/panet_r18_fpem_ffm_600e_ctw1500.py',
'textdet/panet/panet_r18_fpem_ffm_600e_icdar2015.py',
'textdet/panet/panet_r50_fpem_ffm_600e_icdar2017.py'
])
def test_panet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
input_shape = (1, 3, 224, 224)
num_kernels = 2
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_kernels = mm_inputs.pop('gt_kernels')
gt_mask = mm_inputs.pop('gt_mask')
# Test forward train
losses = detector.forward(
imgs, img_metas, gt_kernels=gt_kernels, gt_mask=gt_mask)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test onnx export
detector.forward = partial(
detector.simple_test, img_metas=img_metas, rescale=True)
with tempfile.TemporaryDirectory() as tmpdirname:
onnx_path = f'{tmpdirname}/tmp.onnx'
torch.onnx.export(
detector, (img_list[0], ),
onnx_path,
input_names=['input'],
output_names=['output'],
export_params=True,
keep_initializers_as_inputs=False)
# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)
@pytest.mark.parametrize('cfg_file', [
'textdet/psenet/psenet_r50_fpnf_600e_icdar2015.py',
'textdet/psenet/psenet_r50_fpnf_600e_icdar2017.py',
'textdet/psenet/psenet_r50_fpnf_600e_ctw1500.py'
])
def test_psenet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
input_shape = (1, 3, 224, 224)
num_kernels = 7
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_kernels = mm_inputs.pop('gt_kernels')
gt_mask = mm_inputs.pop('gt_mask')
# Test forward train
losses = detector.forward(
imgs, img_metas, gt_kernels=gt_kernels, gt_mask=gt_mask)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
@pytest.mark.parametrize('cfg_file', [
'textdet/dbnet/dbnet_r18_fpnc_1200e_icdar2015.py',
'textdet/dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py'
])
def test_dbnet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
detector = detector.cuda()
input_shape = (1, 3, 224, 224)
num_kernels = 7
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)
imgs = mm_inputs.pop('imgs')
imgs = imgs.cuda()
img_metas = mm_inputs.pop('img_metas')
gt_shrink = mm_inputs.pop('gt_kernels')
gt_shrink_mask = mm_inputs.pop('gt_mask')
gt_thr = mm_inputs.pop('gt_masks')
gt_thr_mask = mm_inputs.pop('gt_thr_mask')
# Test forward train
losses = detector.forward(
imgs,
img_metas,
gt_shrink=gt_shrink,
gt_shrink_mask=gt_shrink_mask,
gt_thr=gt_thr,
gt_thr_mask=gt_thr_mask)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)
@pytest.mark.parametrize(
'cfg_file',
['textdet/textsnake/'
'textsnake_r50_fpn_unet_1200e_ctw1500.py'])
def test_textsnake(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
input_shape = (1, 3, 224, 224)
num_kernels = 1
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_text_mask = mm_inputs.pop('gt_text_mask')
gt_center_region_mask = mm_inputs.pop('gt_center_region_mask')
gt_mask = mm_inputs.pop('gt_mask')
gt_radius_map = mm_inputs.pop('gt_radius_map')
gt_sin_map = mm_inputs.pop('gt_sin_map')
gt_cos_map = mm_inputs.pop('gt_cos_map')
# Test forward train
losses = detector.forward(
imgs,
img_metas,
gt_text_mask=gt_text_mask,
gt_center_region_mask=gt_center_region_mask,
gt_mask=gt_mask,
gt_radius_map=gt_radius_map,
gt_sin_map=gt_sin_map,
gt_cos_map=gt_cos_map)
assert isinstance(losses, dict)
# Test forward test get_boundary
maps = torch.zeros((1, 5, 224, 224), dtype=torch.float)
maps[:, 0:2, :, :] = -10.
maps[:, 0, 60:100, 12:212] = 10.
maps[:, 1, 70:90, 22:202] = 10.
maps[:, 2, 70:90, 22:202] = 0.
maps[:, 3, 70:90, 22:202] = 1.
maps[:, 4, 70:90, 22:202] = 10.
one_meta = img_metas[0]
result = detector.bbox_head.get_boundary(maps, [one_meta], False)
assert 'boundary_result' in result
assert 'filename' in result
# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)
@pytest.mark.skipif(not torch.cuda.is_available(), reason='requires cuda')
@pytest.mark.parametrize('cfg_file', [
'textdet/fcenet/fcenet_r50dcnv2_fpn_1500e_ctw1500.py',
'textdet/fcenet/fcenet_r50_fpn_1500e_icdar2015.py'
])
def test_fcenet(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
detector = detector.cuda()
fourier_degree = 5
input_shape = (1, 3, 256, 256)
(n, c, h, w) = input_shape
imgs = torch.randn(n, c, h, w).float().cuda()
img_metas = [{
'img_shape': (h, w, c),
'ori_shape': (h, w, c),
'pad_shape': (h, w, c),
'filename': '<demo>.png',
'scale_factor': np.array([1, 1, 1, 1]),
'flip': False,
} for _ in range(n)]
p3_maps = []
p4_maps = []
p5_maps = []
for _ in range(n):
p3_maps.append(
np.random.random((5 + 4 * fourier_degree, h // 8, w // 8)))
p4_maps.append(
np.random.random((5 + 4 * fourier_degree, h // 16, w // 16)))
p5_maps.append(
np.random.random((5 + 4 * fourier_degree, h // 32, w // 32)))
# Test forward train
losses = detector.forward(
imgs, img_metas, p3_maps=p3_maps, p4_maps=p4_maps, p5_maps=p5_maps)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)
@pytest.mark.parametrize(
'cfg_file', ['textdet/drrg/'
'drrg_r50_fpn_unet_1200e_ctw1500.py'])
def test_drrg(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
from mmocr.models import build_detector
detector = build_detector(model)
detector = revert_sync_batchnorm(detector)
input_shape = (1, 3, 224, 224)
num_kernels = 1
mm_inputs = _demo_mm_inputs(num_kernels, input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
gt_text_mask = mm_inputs.pop('gt_text_mask')
gt_center_region_mask = mm_inputs.pop('gt_center_region_mask')
gt_mask = mm_inputs.pop('gt_mask')
gt_top_height_map = mm_inputs.pop('gt_radius_map')
gt_bot_height_map = gt_top_height_map.copy()
gt_sin_map = mm_inputs.pop('gt_sin_map')
gt_cos_map = mm_inputs.pop('gt_cos_map')
num_rois = 32
x = np.random.randint(4, 224, (num_rois, 1))
y = np.random.randint(4, 224, (num_rois, 1))
h = 4 * np.ones((num_rois, 1))
w = 4 * np.ones((num_rois, 1))
angle = (np.random.random_sample((num_rois, 1)) * 2 - 1) * np.pi / 2
cos, sin = np.cos(angle), np.sin(angle)
comp_labels = np.random.randint(1, 3, (num_rois, 1))
num_rois = num_rois * np.ones((num_rois, 1))
comp_attribs = np.hstack([num_rois, x, y, h, w, cos, sin, comp_labels])
gt_comp_attribs = np.expand_dims(comp_attribs.astype(np.float32), axis=0)
# Test forward train
losses = detector.forward(
imgs,
img_metas,
gt_text_mask=gt_text_mask,
gt_center_region_mask=gt_center_region_mask,
gt_mask=gt_mask,
gt_top_height_map=gt_top_height_map,
gt_bot_height_map=gt_bot_height_map,
gt_sin_map=gt_sin_map,
gt_cos_map=gt_cos_map,
gt_comp_attribs=gt_comp_attribs)
assert isinstance(losses, dict)
# Test forward test
model['bbox_head']['in_channels'] = 6
model['bbox_head']['text_region_thr'] = 0.8
model['bbox_head']['center_region_thr'] = 0.8
detector = build_detector(model)
maps = torch.zeros((1, 6, 224, 224), dtype=torch.float)
maps[:, 0:2, :, :] = -10.
maps[:, 0, 60:100, 50:170] = 10.
maps[:, 1, 75:85, 60:160] = 10.
maps[:, 2, 75:85, 60:160] = 0.
maps[:, 3, 75:85, 60:160] = 1.
maps[:, 4, 75:85, 60:160] = 10.
maps[:, 5, 75:85, 60:160] = 10.
with torch.no_grad():
full_pass_weight = torch.zeros((6, 6, 1, 1))
for i in range(6):
full_pass_weight[i, i, 0, 0] = 1
detector.bbox_head.out_conv.weight.data = full_pass_weight
detector.bbox_head.out_conv.bias.data.fill_(0.)
outs = detector.bbox_head.single_test(maps)
boundaries = detector.bbox_head.get_boundary(*outs, img_metas, True)
assert len(boundaries) == 1
# Test show result
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]}
img = np.random.rand(5, 5)
detector.show_result(img, results)