Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
"""pytest tests/test_detector.py.""" | |
import copy | |
import tempfile | |
from functools import partial | |
from os.path import dirname, exists, join | |
import numpy as np | |
import pytest | |
import torch | |
from mmocr.utils import revert_sync_batchnorm | |
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300), | |
num_items=None, num_classes=1): # yapf: disable | |
"""Create a superset of inputs needed to run test or train batches. | |
Args: | |
input_shape (tuple): Input batch dimensions. | |
num_items (None | list[int]): Specifies the number of boxes | |
for each batch item. | |
num_classes (int): Number of distinct labels a box might have. | |
""" | |
from mmdet.core import BitmapMasks | |
(N, C, H, W) = input_shape | |
rng = np.random.RandomState(0) | |
imgs = rng.rand(*input_shape) | |
img_metas = [{ | |
'img_shape': (H, W, C), | |
'ori_shape': (H, W, C), | |
'pad_shape': (H, W, C), | |
'filename': '<demo>.png', | |
'scale_factor': np.array([1, 1, 1, 1]), | |
'flip': False, | |
} for _ in range(N)] | |
gt_bboxes = [] | |
gt_labels = [] | |
gt_masks = [] | |
gt_kernels = [] | |
gt_effective_mask = [] | |
for batch_idx in range(N): | |
if num_items is None: | |
num_boxes = rng.randint(1, 10) | |
else: | |
num_boxes = num_items[batch_idx] | |
cx, cy, bw, bh = rng.rand(num_boxes, 4).T | |
tl_x = ((cx * W) - (W * bw / 2)).clip(0, W) | |
tl_y = ((cy * H) - (H * bh / 2)).clip(0, H) | |
br_x = ((cx * W) + (W * bw / 2)).clip(0, W) | |
br_y = ((cy * H) + (H * bh / 2)).clip(0, H) | |
boxes = np.vstack([tl_x, tl_y, br_x, br_y]).T | |
class_idxs = [0] * num_boxes | |
gt_bboxes.append(torch.FloatTensor(boxes)) | |
gt_labels.append(torch.LongTensor(class_idxs)) | |
kernels = [] | |
for kernel_inx in range(num_kernels): | |
kernel = np.random.rand(H, W) | |
kernels.append(kernel) | |
gt_kernels.append(BitmapMasks(kernels, H, W)) | |
gt_effective_mask.append(BitmapMasks([np.ones((H, W))], H, W)) | |
mask = np.random.randint(0, 2, (len(boxes), H, W), dtype=np.uint8) | |
gt_masks.append(BitmapMasks(mask, H, W)) | |
mm_inputs = { | |
'imgs': torch.FloatTensor(imgs).requires_grad_(True), | |
'img_metas': img_metas, | |
'gt_bboxes': gt_bboxes, | |
'gt_labels': gt_labels, | |
'gt_bboxes_ignore': None, | |
'gt_masks': gt_masks, | |
'gt_kernels': gt_kernels, | |
'gt_mask': gt_effective_mask, | |
'gt_thr_mask': gt_effective_mask, | |
'gt_text_mask': gt_effective_mask, | |
'gt_center_region_mask': gt_effective_mask, | |
'gt_radius_map': gt_kernels, | |
'gt_sin_map': gt_kernels, | |
'gt_cos_map': gt_kernels, | |
} | |
return mm_inputs | |
def _get_config_directory(): | |
"""Find the predefined detector config directory.""" | |
try: | |
# Assume we are running in the source mmocr repo | |
repo_dpath = dirname(dirname(dirname(__file__))) | |
except NameError: | |
# For IPython development when this __file__ is not defined | |
import mmocr | |
repo_dpath = dirname(dirname(mmocr.__file__)) | |
config_dpath = join(repo_dpath, 'configs') | |
if not exists(config_dpath): | |
raise Exception('Cannot find config path') | |
return config_dpath | |
def _get_config_module(fname): | |
"""Load a configuration as a python module.""" | |
from mmcv import Config | |
config_dpath = _get_config_directory() | |
config_fpath = join(config_dpath, fname) | |
config_mod = Config.fromfile(config_fpath) | |
return config_mod | |
def _get_detector_cfg(fname): | |
"""Grab configs necessary to create a detector. | |
These are deep copied to allow for safe modification of parameters without | |
influencing other tests. | |
""" | |
config = _get_config_module(fname) | |
model = copy.deepcopy(config.model) | |
return model | |
def test_ocr_mask_rcnn(cfg_file): | |
model = _get_detector_cfg(cfg_file) | |
model['pretrained'] = None | |
from mmocr.models import build_detector | |
detector = build_detector(model) | |
input_shape = (1, 3, 224, 224) | |
mm_inputs = _demo_mm_inputs(0, input_shape) | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
gt_labels = mm_inputs.pop('gt_labels') | |
gt_masks = mm_inputs.pop('gt_masks') | |
# Test forward train | |
gt_bboxes = mm_inputs['gt_bboxes'] | |
losses = detector.forward( | |
imgs, | |
img_metas, | |
gt_bboxes=gt_bboxes, | |
gt_labels=gt_labels, | |
gt_masks=gt_masks) | |
assert isinstance(losses, dict) | |
# Test forward test | |
with torch.no_grad(): | |
img_list = [g[None, :] for g in imgs] | |
batch_results = [] | |
for one_img, one_meta in zip(img_list, img_metas): | |
result = detector.forward([one_img], [[one_meta]], | |
return_loss=False) | |
batch_results.append(result) | |
# Test show_result | |
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} | |
img = np.random.rand(5, 5) | |
detector.show_result(img, results) | |
def test_panet(cfg_file): | |
model = _get_detector_cfg(cfg_file) | |
model['pretrained'] = None | |
from mmocr.models import build_detector | |
detector = build_detector(model) | |
detector = revert_sync_batchnorm(detector) | |
input_shape = (1, 3, 224, 224) | |
num_kernels = 2 | |
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
gt_kernels = mm_inputs.pop('gt_kernels') | |
gt_mask = mm_inputs.pop('gt_mask') | |
# Test forward train | |
losses = detector.forward( | |
imgs, img_metas, gt_kernels=gt_kernels, gt_mask=gt_mask) | |
assert isinstance(losses, dict) | |
# Test forward test | |
with torch.no_grad(): | |
img_list = [g[None, :] for g in imgs] | |
batch_results = [] | |
for one_img, one_meta in zip(img_list, img_metas): | |
result = detector.forward([one_img], [[one_meta]], | |
return_loss=False) | |
batch_results.append(result) | |
# Test onnx export | |
detector.forward = partial( | |
detector.simple_test, img_metas=img_metas, rescale=True) | |
with tempfile.TemporaryDirectory() as tmpdirname: | |
onnx_path = f'{tmpdirname}/tmp.onnx' | |
torch.onnx.export( | |
detector, (img_list[0], ), | |
onnx_path, | |
input_names=['input'], | |
output_names=['output'], | |
export_params=True, | |
keep_initializers_as_inputs=False) | |
# Test show result | |
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} | |
img = np.random.rand(5, 5) | |
detector.show_result(img, results) | |
def test_psenet(cfg_file): | |
model = _get_detector_cfg(cfg_file) | |
model['pretrained'] = None | |
from mmocr.models import build_detector | |
detector = build_detector(model) | |
detector = revert_sync_batchnorm(detector) | |
input_shape = (1, 3, 224, 224) | |
num_kernels = 7 | |
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
gt_kernels = mm_inputs.pop('gt_kernels') | |
gt_mask = mm_inputs.pop('gt_mask') | |
# Test forward train | |
losses = detector.forward( | |
imgs, img_metas, gt_kernels=gt_kernels, gt_mask=gt_mask) | |
assert isinstance(losses, dict) | |
# Test forward test | |
with torch.no_grad(): | |
img_list = [g[None, :] for g in imgs] | |
batch_results = [] | |
for one_img, one_meta in zip(img_list, img_metas): | |
result = detector.forward([one_img], [[one_meta]], | |
return_loss=False) | |
batch_results.append(result) | |
# Test show result | |
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} | |
img = np.random.rand(5, 5) | |
detector.show_result(img, results) | |
def test_dbnet(cfg_file): | |
model = _get_detector_cfg(cfg_file) | |
model['pretrained'] = None | |
from mmocr.models import build_detector | |
detector = build_detector(model) | |
detector = revert_sync_batchnorm(detector) | |
detector = detector.cuda() | |
input_shape = (1, 3, 224, 224) | |
num_kernels = 7 | |
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) | |
imgs = mm_inputs.pop('imgs') | |
imgs = imgs.cuda() | |
img_metas = mm_inputs.pop('img_metas') | |
gt_shrink = mm_inputs.pop('gt_kernels') | |
gt_shrink_mask = mm_inputs.pop('gt_mask') | |
gt_thr = mm_inputs.pop('gt_masks') | |
gt_thr_mask = mm_inputs.pop('gt_thr_mask') | |
# Test forward train | |
losses = detector.forward( | |
imgs, | |
img_metas, | |
gt_shrink=gt_shrink, | |
gt_shrink_mask=gt_shrink_mask, | |
gt_thr=gt_thr, | |
gt_thr_mask=gt_thr_mask) | |
assert isinstance(losses, dict) | |
# Test forward test | |
with torch.no_grad(): | |
img_list = [g[None, :] for g in imgs] | |
batch_results = [] | |
for one_img, one_meta in zip(img_list, img_metas): | |
result = detector.forward([one_img], [[one_meta]], | |
return_loss=False) | |
batch_results.append(result) | |
# Test show result | |
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} | |
img = np.random.rand(5, 5) | |
detector.show_result(img, results) | |
def test_textsnake(cfg_file): | |
model = _get_detector_cfg(cfg_file) | |
model['pretrained'] = None | |
from mmocr.models import build_detector | |
detector = build_detector(model) | |
detector = revert_sync_batchnorm(detector) | |
input_shape = (1, 3, 224, 224) | |
num_kernels = 1 | |
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
gt_text_mask = mm_inputs.pop('gt_text_mask') | |
gt_center_region_mask = mm_inputs.pop('gt_center_region_mask') | |
gt_mask = mm_inputs.pop('gt_mask') | |
gt_radius_map = mm_inputs.pop('gt_radius_map') | |
gt_sin_map = mm_inputs.pop('gt_sin_map') | |
gt_cos_map = mm_inputs.pop('gt_cos_map') | |
# Test forward train | |
losses = detector.forward( | |
imgs, | |
img_metas, | |
gt_text_mask=gt_text_mask, | |
gt_center_region_mask=gt_center_region_mask, | |
gt_mask=gt_mask, | |
gt_radius_map=gt_radius_map, | |
gt_sin_map=gt_sin_map, | |
gt_cos_map=gt_cos_map) | |
assert isinstance(losses, dict) | |
# Test forward test get_boundary | |
maps = torch.zeros((1, 5, 224, 224), dtype=torch.float) | |
maps[:, 0:2, :, :] = -10. | |
maps[:, 0, 60:100, 12:212] = 10. | |
maps[:, 1, 70:90, 22:202] = 10. | |
maps[:, 2, 70:90, 22:202] = 0. | |
maps[:, 3, 70:90, 22:202] = 1. | |
maps[:, 4, 70:90, 22:202] = 10. | |
one_meta = img_metas[0] | |
result = detector.bbox_head.get_boundary(maps, [one_meta], False) | |
assert 'boundary_result' in result | |
assert 'filename' in result | |
# Test show result | |
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} | |
img = np.random.rand(5, 5) | |
detector.show_result(img, results) | |
def test_fcenet(cfg_file): | |
model = _get_detector_cfg(cfg_file) | |
model['pretrained'] = None | |
from mmocr.models import build_detector | |
detector = build_detector(model) | |
detector = revert_sync_batchnorm(detector) | |
detector = detector.cuda() | |
fourier_degree = 5 | |
input_shape = (1, 3, 256, 256) | |
(n, c, h, w) = input_shape | |
imgs = torch.randn(n, c, h, w).float().cuda() | |
img_metas = [{ | |
'img_shape': (h, w, c), | |
'ori_shape': (h, w, c), | |
'pad_shape': (h, w, c), | |
'filename': '<demo>.png', | |
'scale_factor': np.array([1, 1, 1, 1]), | |
'flip': False, | |
} for _ in range(n)] | |
p3_maps = [] | |
p4_maps = [] | |
p5_maps = [] | |
for _ in range(n): | |
p3_maps.append( | |
np.random.random((5 + 4 * fourier_degree, h // 8, w // 8))) | |
p4_maps.append( | |
np.random.random((5 + 4 * fourier_degree, h // 16, w // 16))) | |
p5_maps.append( | |
np.random.random((5 + 4 * fourier_degree, h // 32, w // 32))) | |
# Test forward train | |
losses = detector.forward( | |
imgs, img_metas, p3_maps=p3_maps, p4_maps=p4_maps, p5_maps=p5_maps) | |
assert isinstance(losses, dict) | |
# Test forward test | |
with torch.no_grad(): | |
img_list = [g[None, :] for g in imgs] | |
batch_results = [] | |
for one_img, one_meta in zip(img_list, img_metas): | |
result = detector.forward([one_img], [[one_meta]], | |
return_loss=False) | |
batch_results.append(result) | |
# Test show result | |
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} | |
img = np.random.rand(5, 5) | |
detector.show_result(img, results) | |
def test_drrg(cfg_file): | |
model = _get_detector_cfg(cfg_file) | |
model['pretrained'] = None | |
from mmocr.models import build_detector | |
detector = build_detector(model) | |
detector = revert_sync_batchnorm(detector) | |
input_shape = (1, 3, 224, 224) | |
num_kernels = 1 | |
mm_inputs = _demo_mm_inputs(num_kernels, input_shape) | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
gt_text_mask = mm_inputs.pop('gt_text_mask') | |
gt_center_region_mask = mm_inputs.pop('gt_center_region_mask') | |
gt_mask = mm_inputs.pop('gt_mask') | |
gt_top_height_map = mm_inputs.pop('gt_radius_map') | |
gt_bot_height_map = gt_top_height_map.copy() | |
gt_sin_map = mm_inputs.pop('gt_sin_map') | |
gt_cos_map = mm_inputs.pop('gt_cos_map') | |
num_rois = 32 | |
x = np.random.randint(4, 224, (num_rois, 1)) | |
y = np.random.randint(4, 224, (num_rois, 1)) | |
h = 4 * np.ones((num_rois, 1)) | |
w = 4 * np.ones((num_rois, 1)) | |
angle = (np.random.random_sample((num_rois, 1)) * 2 - 1) * np.pi / 2 | |
cos, sin = np.cos(angle), np.sin(angle) | |
comp_labels = np.random.randint(1, 3, (num_rois, 1)) | |
num_rois = num_rois * np.ones((num_rois, 1)) | |
comp_attribs = np.hstack([num_rois, x, y, h, w, cos, sin, comp_labels]) | |
gt_comp_attribs = np.expand_dims(comp_attribs.astype(np.float32), axis=0) | |
# Test forward train | |
losses = detector.forward( | |
imgs, | |
img_metas, | |
gt_text_mask=gt_text_mask, | |
gt_center_region_mask=gt_center_region_mask, | |
gt_mask=gt_mask, | |
gt_top_height_map=gt_top_height_map, | |
gt_bot_height_map=gt_bot_height_map, | |
gt_sin_map=gt_sin_map, | |
gt_cos_map=gt_cos_map, | |
gt_comp_attribs=gt_comp_attribs) | |
assert isinstance(losses, dict) | |
# Test forward test | |
model['bbox_head']['in_channels'] = 6 | |
model['bbox_head']['text_region_thr'] = 0.8 | |
model['bbox_head']['center_region_thr'] = 0.8 | |
detector = build_detector(model) | |
maps = torch.zeros((1, 6, 224, 224), dtype=torch.float) | |
maps[:, 0:2, :, :] = -10. | |
maps[:, 0, 60:100, 50:170] = 10. | |
maps[:, 1, 75:85, 60:160] = 10. | |
maps[:, 2, 75:85, 60:160] = 0. | |
maps[:, 3, 75:85, 60:160] = 1. | |
maps[:, 4, 75:85, 60:160] = 10. | |
maps[:, 5, 75:85, 60:160] = 10. | |
with torch.no_grad(): | |
full_pass_weight = torch.zeros((6, 6, 1, 1)) | |
for i in range(6): | |
full_pass_weight[i, i, 0, 0] = 1 | |
detector.bbox_head.out_conv.weight.data = full_pass_weight | |
detector.bbox_head.out_conv.bias.data.fill_(0.) | |
outs = detector.bbox_head.single_test(maps) | |
boundaries = detector.bbox_head.get_boundary(*outs, img_metas, True) | |
assert len(boundaries) == 1 | |
# Test show result | |
results = {'boundary_result': [[0, 0, 1, 0, 1, 1, 0, 1, 0.9]]} | |
img = np.random.rand(5, 5) | |
detector.show_result(img, results) | |