Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import torch | |
from mmdet.core import BitmapMasks | |
import mmocr.models.textdet.losses as losses | |
def test_panloss(): | |
panloss = losses.PANLoss() | |
# test bitmasks2tensor | |
mask = [[1, 0, 1], [1, 1, 1], [0, 0, 1]] | |
target = [[1, 0, 1, 0, 0], [1, 1, 1, 0, 0], [0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] | |
masks = [np.array(mask)] | |
bitmasks = BitmapMasks(masks, 3, 3) | |
target_sz = (6, 5) | |
results = panloss.bitmasks2tensor([bitmasks], target_sz) | |
assert len(results) == 1 | |
assert torch.sum(torch.abs(results[0].float() - | |
torch.Tensor(target))).item() == 0 | |
def test_textsnakeloss(): | |
textsnakeloss = losses.TextSnakeLoss() | |
# test balanced_bce_loss | |
pred = torch.tensor([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=torch.float) | |
target = torch.tensor([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=torch.long) | |
mask = torch.tensor([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=torch.long) | |
bce_loss = textsnakeloss.balanced_bce_loss(pred, target, mask).item() | |
assert np.allclose(bce_loss, 0) | |
def test_fcenetloss(): | |
k = 5 | |
fcenetloss = losses.FCELoss(fourier_degree=k, num_sample=10) | |
input_shape = (1, 3, 64, 64) | |
(n, c, h, w) = input_shape | |
# test ohem | |
pred = torch.ones((200, 2), dtype=torch.float) | |
target = torch.ones(200, dtype=torch.long) | |
target[20:] = 0 | |
mask = torch.ones(200, dtype=torch.long) | |
ohem_loss1 = fcenetloss.ohem(pred, target, mask) | |
ohem_loss2 = fcenetloss.ohem(pred, target, 1 - mask) | |
assert isinstance(ohem_loss1, torch.Tensor) | |
assert isinstance(ohem_loss2, torch.Tensor) | |
# test forward | |
preds = [] | |
for i in range(n): | |
scale = 8 * 2**i | |
pred = [] | |
pred.append(torch.rand(n, 4, h // scale, w // scale)) | |
pred.append(torch.rand(n, 4 * k + 2, h // scale, w // scale)) | |
preds.append(pred) | |
p3_maps = [] | |
p4_maps = [] | |
p5_maps = [] | |
for _ in range(n): | |
p3_maps.append(np.random.random((5 + 4 * k, h // 8, w // 8))) | |
p4_maps.append(np.random.random((5 + 4 * k, h // 16, w // 16))) | |
p5_maps.append(np.random.random((5 + 4 * k, h // 32, w // 32))) | |
loss = fcenetloss(preds, 0, p3_maps, p4_maps, p5_maps) | |
assert isinstance(loss, dict) | |
def test_drrgloss(): | |
drrgloss = losses.DRRGLoss() | |
assert np.allclose(drrgloss.ohem_ratio, 3.0) | |
# test balance_bce_loss | |
pred = torch.tensor([[0, 1, 0], [1, 1, 1], [0, 1, 0]], dtype=torch.float) | |
target = torch.tensor([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=torch.long) | |
mask = torch.tensor([[0, 1, 0], [1, 0, 1], [0, 1, 0]], dtype=torch.long) | |
bce_loss = drrgloss.balance_bce_loss(pred, target, mask).item() | |
assert np.allclose(bce_loss, 0) | |
# test balance_bce_loss with positive_count equal to zero | |
pred = torch.ones((16, 16), dtype=torch.float) | |
target = torch.ones((16, 16), dtype=torch.long) | |
mask = torch.zeros((16, 16), dtype=torch.long) | |
bce_loss = drrgloss.balance_bce_loss(pred, target, mask).item() | |
assert np.allclose(bce_loss, 0) | |
# test gcn_loss | |
gcn_preds = torch.tensor([[0., 1.], [1., 0.]]) | |
labels = torch.tensor([1, 0], dtype=torch.long) | |
gcn_loss = drrgloss.gcn_loss((gcn_preds, labels)) | |
assert gcn_loss.item() | |
# test bitmasks2tensor | |
mask = [[1, 0, 1], [1, 1, 1], [0, 0, 1]] | |
target = [[1, 0, 1, 0, 0], [1, 1, 1, 0, 0], [0, 0, 1, 0, 0], | |
[0, 0, 0, 0, 0], [0, 0, 0, 0, 0], [0, 0, 0, 0, 0]] | |
masks = [np.array(mask)] | |
bitmasks = BitmapMasks(masks, 3, 3) | |
target_sz = (6, 5) | |
results = drrgloss.bitmasks2tensor([bitmasks], target_sz) | |
assert len(results) == 1 | |
assert torch.sum(torch.abs(results[0].float() - | |
torch.Tensor(target))).item() == 0 | |
# test forward | |
target_maps = [BitmapMasks([np.random.randn(20, 20)], 20, 20)] | |
target_masks = [BitmapMasks([np.ones((20, 20))], 20, 20)] | |
gt_masks = [BitmapMasks([np.ones((20, 20))], 20, 20)] | |
preds = (torch.randn((1, 6, 20, 20)), (gcn_preds, labels)) | |
loss_dict = drrgloss(preds, 1., target_masks, target_masks, gt_masks, | |
target_maps, target_maps, target_maps, target_maps) | |
assert isinstance(loss_dict, dict) | |
assert 'loss_text' in loss_dict.keys() | |
assert 'loss_center' in loss_dict.keys() | |
assert 'loss_height' in loss_dict.keys() | |
assert 'loss_sin' in loss_dict.keys() | |
assert 'loss_cos' in loss_dict.keys() | |
assert 'loss_gcn' in loss_dict.keys() | |
# test forward with downsample_ratio less than 1. | |
target_maps = [BitmapMasks([np.random.randn(40, 40)], 40, 40)] | |
target_masks = [BitmapMasks([np.ones((40, 40))], 40, 40)] | |
gt_masks = [BitmapMasks([np.ones((40, 40))], 40, 40)] | |
preds = (torch.randn((1, 6, 20, 20)), (gcn_preds, labels)) | |
loss_dict = drrgloss(preds, 0.5, target_masks, target_masks, gt_masks, | |
target_maps, target_maps, target_maps, target_maps) | |
assert isinstance(loss_dict, dict) | |
# test forward with blank gt_mask. | |
target_maps = [BitmapMasks([np.random.randn(20, 20)], 20, 20)] | |
target_masks = [BitmapMasks([np.ones((20, 20))], 20, 20)] | |
gt_masks = [BitmapMasks([np.zeros((20, 20))], 20, 20)] | |
preds = (torch.randn((1, 6, 20, 20)), (gcn_preds, labels)) | |
loss_dict = drrgloss(preds, 1., target_masks, target_masks, gt_masks, | |
target_maps, target_maps, target_maps, target_maps) | |
assert isinstance(loss_dict, dict) | |
def test_dice_loss(): | |
pred = torch.Tensor([[[-1000, -1000, -1000], [-1000, -1000, -1000], | |
[-1000, -1000, -1000]]]) | |
target = torch.Tensor([[[0, 0, 0], [0, 0, 0], [0, 0, 0]]]) | |
mask = torch.Tensor([[[1, 1, 1], [1, 1, 1], [1, 1, 1]]]) | |
pan_loss = losses.PANLoss() | |
dice_loss = pan_loss.dice_loss_with_logits(pred, target, mask) | |
assert np.allclose(dice_loss.item(), 0) | |