Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import torch | |
from mmocr.models.textdet.modules import GCN, LocalGraphs, ProposalLocalGraphs | |
from mmocr.models.textdet.modules.utils import (feature_embedding, | |
normalize_adjacent_matrix) | |
def test_local_graph_forward_train(): | |
geo_feat_len = 24 | |
pooling_h, pooling_w = pooling_out_size = (2, 2) | |
num_rois = 32 | |
local_graph_generator = LocalGraphs((4, 4), 3, geo_feat_len, 1.0, | |
pooling_out_size, 0.5) | |
feature_maps = torch.randn((2, 3, 128, 128), dtype=torch.float) | |
x = np.random.randint(4, 124, (num_rois, 1)) | |
y = np.random.randint(4, 124, (num_rois, 1)) | |
h = 4 * np.ones((num_rois, 1)) | |
w = 4 * np.ones((num_rois, 1)) | |
angle = (np.random.random_sample((num_rois, 1)) * 2 - 1) * np.pi / 2 | |
cos, sin = np.cos(angle), np.sin(angle) | |
comp_labels = np.random.randint(1, 3, (num_rois, 1)) | |
num_rois = num_rois * np.ones((num_rois, 1)) | |
comp_attribs = np.hstack([num_rois, x, y, h, w, cos, sin, comp_labels]) | |
comp_attribs = comp_attribs.astype(np.float32) | |
comp_attribs_ = comp_attribs.copy() | |
comp_attribs = np.stack([comp_attribs, comp_attribs_]) | |
(node_feats, adjacent_matrix, knn_inds, | |
linkage_labels) = local_graph_generator(feature_maps, comp_attribs) | |
feat_len = geo_feat_len + feature_maps.size()[1] * pooling_h * pooling_w | |
assert node_feats.dim() == adjacent_matrix.dim() == 3 | |
assert node_feats.size()[-1] == feat_len | |
assert knn_inds.size()[-1] == 4 | |
assert linkage_labels.size()[-1] == 4 | |
assert (node_feats.size()[0] == adjacent_matrix.size()[0] == | |
knn_inds.size()[0] == linkage_labels.size()[0]) | |
assert (node_feats.size()[1] == adjacent_matrix.size()[1] == | |
adjacent_matrix.size()[2]) | |
def test_local_graph_forward_test(): | |
geo_feat_len = 24 | |
pooling_h, pooling_w = pooling_out_size = (2, 2) | |
local_graph_generator = ProposalLocalGraphs( | |
(4, 4), 2, geo_feat_len, 1., pooling_out_size, 0.1, 3., 6., 1., 0.5, | |
0.3, 0.5, 0.5, 2) | |
maps = torch.zeros((1, 6, 224, 224), dtype=torch.float) | |
maps[:, 0:2, :, :] = -10. | |
maps[:, 0, 60:100, 50:170] = 10. | |
maps[:, 1, 75:85, 60:160] = 10. | |
maps[:, 2, 75:85, 60:160] = 0. | |
maps[:, 3, 75:85, 60:160] = 1. | |
maps[:, 4, 75:85, 60:160] = 10. | |
maps[:, 5, 75:85, 60:160] = 10. | |
feature_maps = torch.randn((2, 6, 224, 224), dtype=torch.float) | |
feat_len = geo_feat_len + feature_maps.size()[1] * pooling_h * pooling_w | |
none_flag, graph_data = local_graph_generator(maps, feature_maps) | |
(node_feats, adjacent_matrices, knn_inds, local_graphs, | |
text_comps) = graph_data | |
assert none_flag is False | |
assert text_comps.ndim == 2 | |
assert text_comps.shape[0] > 0 | |
assert text_comps.shape[1] == 9 | |
assert (node_feats.size()[0] == adjacent_matrices.size()[0] == | |
knn_inds.size()[0] == local_graphs.size()[0] == | |
text_comps.shape[0]) | |
assert (node_feats.size()[1] == adjacent_matrices.size()[1] == | |
adjacent_matrices.size()[2] == local_graphs.size()[1]) | |
assert node_feats.size()[-1] == feat_len | |
# test proposal local graphs with area of center region less than threshold | |
maps[:, 1, 75:85, 60:160] = -10. | |
maps[:, 1, 80, 80] = 10. | |
none_flag, _ = local_graph_generator(maps, feature_maps) | |
assert none_flag | |
# test proposal local graphs with one text component | |
local_graph_generator = ProposalLocalGraphs( | |
(4, 4), 2, geo_feat_len, 1., pooling_out_size, 0.1, 8., 20., 1., 0.5, | |
0.3, 0.5, 0.5, 2) | |
maps[:, 1, 78:82, 78:82] = 10. | |
none_flag, _ = local_graph_generator(maps, feature_maps) | |
assert none_flag | |
# test proposal local graphs with text components out of text region | |
maps[:, 0, 60:100, 50:170] = -10. | |
maps[:, 0, 78:82, 78:82] = 10. | |
none_flag, _ = local_graph_generator(maps, feature_maps) | |
assert none_flag | |
def test_gcn(): | |
num_local_graphs = 32 | |
num_max_graph_nodes = 16 | |
input_feat_len = 512 | |
k = 8 | |
gcn = GCN(input_feat_len) | |
node_feat = torch.randn( | |
(num_local_graphs, num_max_graph_nodes, input_feat_len)) | |
adjacent_matrix = torch.rand( | |
(num_local_graphs, num_max_graph_nodes, num_max_graph_nodes)) | |
knn_inds = torch.randint(1, num_max_graph_nodes, (num_local_graphs, k)) | |
output = gcn(node_feat, adjacent_matrix, knn_inds) | |
assert output.size() == (num_local_graphs * k, 2) | |
def test_normalize_adjacent_matrix(): | |
adjacent_matrix = np.random.randint(0, 2, (16, 16)) | |
normalized_matrix = normalize_adjacent_matrix(adjacent_matrix) | |
assert normalized_matrix.shape == adjacent_matrix.shape | |
def test_feature_embedding(): | |
out_feat_len = 48 | |
# test without residue dimensions | |
feats = np.random.randn(10, 8) | |
embed_feats = feature_embedding(feats, out_feat_len) | |
assert embed_feats.shape == (10, out_feat_len) | |
# test with residue dimensions | |
feats = np.random.randn(10, 9) | |
embed_feats = feature_embedding(feats, out_feat_len) | |
assert embed_feats.shape == (10, out_feat_len) | |