MMOCR / tests /test_models /test_ocr_layer.py
tomofi's picture
Add application file
2366e36
raw
history blame
1.94 kB
# Copyright (c) OpenMMLab. All rights reserved.
import torch
from mmocr.models.common import (PositionalEncoding, TFDecoderLayer,
TFEncoderLayer)
from mmocr.models.textrecog.layers import BasicBlock, Bottleneck
from mmocr.models.textrecog.layers.conv_layer import conv3x3
def test_conv_layer():
conv3by3 = conv3x3(3, 6)
assert conv3by3.in_channels == 3
assert conv3by3.out_channels == 6
assert conv3by3.kernel_size == (3, 3)
x = torch.rand(1, 64, 224, 224)
# test basic block
basic_block = BasicBlock(64, 64)
assert basic_block.expansion == 1
out = basic_block(x)
assert out.shape == torch.Size([1, 64, 224, 224])
# test bottle neck
bottle_neck = Bottleneck(64, 64, downsample=True)
assert bottle_neck.expansion == 4
out = bottle_neck(x)
assert out.shape == torch.Size([1, 256, 224, 224])
def test_transformer_layer():
# test decoder_layer
decoder_layer = TFDecoderLayer()
in_dec = torch.rand(1, 30, 512)
out_enc = torch.rand(1, 128, 512)
out_dec = decoder_layer(in_dec, out_enc)
assert out_dec.shape == torch.Size([1, 30, 512])
decoder_layer = TFDecoderLayer(
operation_order=('self_attn', 'norm', 'enc_dec_attn', 'norm', 'ffn',
'norm'))
out_dec = decoder_layer(in_dec, out_enc)
assert out_dec.shape == torch.Size([1, 30, 512])
# test positional_encoding
pos_encoder = PositionalEncoding()
x = torch.rand(1, 30, 512)
out = pos_encoder(x)
assert out.size() == x.size()
# test encoder_layer
encoder_layer = TFEncoderLayer()
in_enc = torch.rand(1, 20, 512)
out_enc = encoder_layer(in_enc)
assert out_dec.shape == torch.Size([1, 30, 512])
encoder_layer = TFEncoderLayer(
operation_order=('self_attn', 'norm', 'ffn', 'norm'))
out_enc = encoder_layer(in_enc)
assert out_dec.shape == torch.Size([1, 30, 512])