MMOCR / tests /test_models /test_ocr_loss.py
tomofi's picture
Add application file
2366e36
raw
history blame
4.2 kB
# Copyright (c) OpenMMLab. All rights reserved.
import pytest
import torch
from mmocr.models.common.losses import DiceLoss
from mmocr.models.textrecog.losses import (ABILoss, CELoss, CTCLoss, SARLoss,
TFLoss)
def test_ctc_loss():
with pytest.raises(AssertionError):
CTCLoss(flatten='flatten')
with pytest.raises(AssertionError):
CTCLoss(blank=None)
with pytest.raises(AssertionError):
CTCLoss(reduction=1)
with pytest.raises(AssertionError):
CTCLoss(zero_infinity='zero')
# test CTCLoss
ctc_loss = CTCLoss()
outputs = torch.zeros(2, 40, 37)
targets_dict = {
'flatten_targets': torch.IntTensor([1, 2, 3, 4, 5]),
'target_lengths': torch.LongTensor([2, 3])
}
losses = ctc_loss(outputs, targets_dict)
assert isinstance(losses, dict)
assert 'loss_ctc' in losses
assert torch.allclose(losses['loss_ctc'],
torch.tensor(losses['loss_ctc'].item()).float())
def test_ce_loss():
with pytest.raises(AssertionError):
CELoss(ignore_index='ignore')
with pytest.raises(AssertionError):
CELoss(reduction=1)
with pytest.raises(AssertionError):
CELoss(reduction='avg')
ce_loss = CELoss(ignore_index=0)
outputs = torch.rand(1, 10, 37)
targets_dict = {
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]])
}
losses = ce_loss(outputs, targets_dict)
assert isinstance(losses, dict)
assert 'loss_ce' in losses
assert losses['loss_ce'].size(1) == 10
ce_loss = CELoss(ignore_first_char=True)
outputs = torch.rand(1, 10, 37)
targets_dict = {
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]])
}
new_output, new_target = ce_loss.format(outputs, targets_dict)
assert new_output.shape == torch.Size([1, 37, 9])
assert new_target.shape == torch.Size([1, 9])
def test_sar_loss():
outputs = torch.rand(1, 10, 37)
targets_dict = {
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]])
}
sar_loss = SARLoss()
new_output, new_target = sar_loss.format(outputs, targets_dict)
assert new_output.shape == torch.Size([1, 37, 9])
assert new_target.shape == torch.Size([1, 9])
def test_tf_loss():
with pytest.raises(AssertionError):
TFLoss(flatten=1.0)
outputs = torch.rand(1, 10, 37)
targets_dict = {
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]])
}
tf_loss = TFLoss(flatten=False)
new_output, new_target = tf_loss.format(outputs, targets_dict)
assert new_output.shape == torch.Size([1, 37, 9])
assert new_target.shape == torch.Size([1, 9])
def test_dice_loss():
with pytest.raises(AssertionError):
DiceLoss(eps='1')
dice_loss = DiceLoss()
pred = torch.rand(1, 1, 32, 32)
gt = torch.rand(1, 1, 32, 32)
loss = dice_loss(pred, gt, None)
assert isinstance(loss, torch.Tensor)
mask = torch.rand(1, 1, 1, 1)
loss = dice_loss(pred, gt, mask)
assert isinstance(loss, torch.Tensor)
def test_abi_loss():
loss = ABILoss(num_classes=90)
outputs = dict(
out_enc=dict(logits=torch.randn(2, 10, 90)),
out_decs=[
dict(logits=torch.randn(2, 10, 90)),
dict(logits=torch.randn(2, 10, 90))
],
out_fusers=[
dict(logits=torch.randn(2, 10, 90)),
dict(logits=torch.randn(2, 10, 90))
])
targets_dict = {
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]]),
'targets':
[torch.LongTensor([1, 2, 3, 4]),
torch.LongTensor([1, 2, 3])]
}
result = loss(outputs, targets_dict)
assert isinstance(result, dict)
assert isinstance(result['loss_visual'], torch.Tensor)
assert isinstance(result['loss_lang'], torch.Tensor)
assert isinstance(result['loss_fusion'], torch.Tensor)
outputs.pop('out_enc')
loss(outputs, targets_dict)
outputs.pop('out_decs')
loss(outputs, targets_dict)
outputs.pop('out_fusers')
with pytest.raises(AssertionError):
loss(outputs, targets_dict)