Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import pytest | |
import torch | |
from mmocr.models.common.losses import DiceLoss | |
from mmocr.models.textrecog.losses import (ABILoss, CELoss, CTCLoss, SARLoss, | |
TFLoss) | |
def test_ctc_loss(): | |
with pytest.raises(AssertionError): | |
CTCLoss(flatten='flatten') | |
with pytest.raises(AssertionError): | |
CTCLoss(blank=None) | |
with pytest.raises(AssertionError): | |
CTCLoss(reduction=1) | |
with pytest.raises(AssertionError): | |
CTCLoss(zero_infinity='zero') | |
# test CTCLoss | |
ctc_loss = CTCLoss() | |
outputs = torch.zeros(2, 40, 37) | |
targets_dict = { | |
'flatten_targets': torch.IntTensor([1, 2, 3, 4, 5]), | |
'target_lengths': torch.LongTensor([2, 3]) | |
} | |
losses = ctc_loss(outputs, targets_dict) | |
assert isinstance(losses, dict) | |
assert 'loss_ctc' in losses | |
assert torch.allclose(losses['loss_ctc'], | |
torch.tensor(losses['loss_ctc'].item()).float()) | |
def test_ce_loss(): | |
with pytest.raises(AssertionError): | |
CELoss(ignore_index='ignore') | |
with pytest.raises(AssertionError): | |
CELoss(reduction=1) | |
with pytest.raises(AssertionError): | |
CELoss(reduction='avg') | |
ce_loss = CELoss(ignore_index=0) | |
outputs = torch.rand(1, 10, 37) | |
targets_dict = { | |
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]]) | |
} | |
losses = ce_loss(outputs, targets_dict) | |
assert isinstance(losses, dict) | |
assert 'loss_ce' in losses | |
assert losses['loss_ce'].size(1) == 10 | |
ce_loss = CELoss(ignore_first_char=True) | |
outputs = torch.rand(1, 10, 37) | |
targets_dict = { | |
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]]) | |
} | |
new_output, new_target = ce_loss.format(outputs, targets_dict) | |
assert new_output.shape == torch.Size([1, 37, 9]) | |
assert new_target.shape == torch.Size([1, 9]) | |
def test_sar_loss(): | |
outputs = torch.rand(1, 10, 37) | |
targets_dict = { | |
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]]) | |
} | |
sar_loss = SARLoss() | |
new_output, new_target = sar_loss.format(outputs, targets_dict) | |
assert new_output.shape == torch.Size([1, 37, 9]) | |
assert new_target.shape == torch.Size([1, 9]) | |
def test_tf_loss(): | |
with pytest.raises(AssertionError): | |
TFLoss(flatten=1.0) | |
outputs = torch.rand(1, 10, 37) | |
targets_dict = { | |
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]]) | |
} | |
tf_loss = TFLoss(flatten=False) | |
new_output, new_target = tf_loss.format(outputs, targets_dict) | |
assert new_output.shape == torch.Size([1, 37, 9]) | |
assert new_target.shape == torch.Size([1, 9]) | |
def test_dice_loss(): | |
with pytest.raises(AssertionError): | |
DiceLoss(eps='1') | |
dice_loss = DiceLoss() | |
pred = torch.rand(1, 1, 32, 32) | |
gt = torch.rand(1, 1, 32, 32) | |
loss = dice_loss(pred, gt, None) | |
assert isinstance(loss, torch.Tensor) | |
mask = torch.rand(1, 1, 1, 1) | |
loss = dice_loss(pred, gt, mask) | |
assert isinstance(loss, torch.Tensor) | |
def test_abi_loss(): | |
loss = ABILoss(num_classes=90) | |
outputs = dict( | |
out_enc=dict(logits=torch.randn(2, 10, 90)), | |
out_decs=[ | |
dict(logits=torch.randn(2, 10, 90)), | |
dict(logits=torch.randn(2, 10, 90)) | |
], | |
out_fusers=[ | |
dict(logits=torch.randn(2, 10, 90)), | |
dict(logits=torch.randn(2, 10, 90)) | |
]) | |
targets_dict = { | |
'padded_targets': torch.LongTensor([[1, 2, 3, 4, 0, 0, 0, 0, 0, 0]]), | |
'targets': | |
[torch.LongTensor([1, 2, 3, 4]), | |
torch.LongTensor([1, 2, 3])] | |
} | |
result = loss(outputs, targets_dict) | |
assert isinstance(result, dict) | |
assert isinstance(result['loss_visual'], torch.Tensor) | |
assert isinstance(result['loss_lang'], torch.Tensor) | |
assert isinstance(result['loss_fusion'], torch.Tensor) | |
outputs.pop('out_enc') | |
loss(outputs, targets_dict) | |
outputs.pop('out_decs') | |
loss(outputs, targets_dict) | |
outputs.pop('out_fusers') | |
with pytest.raises(AssertionError): | |
loss(outputs, targets_dict) | |