Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
from os.path import dirname, exists, join | |
import numpy as np | |
import pytest | |
import torch | |
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300), | |
num_items=None): # yapf: disable | |
"""Create a superset of inputs needed to run test or train batches. | |
Args: | |
input_shape (tuple): Input batch dimensions. | |
num_items (None | list[int]): Specifies the number of boxes | |
for each batch item. | |
""" | |
(N, C, H, W) = input_shape | |
rng = np.random.RandomState(0) | |
imgs = rng.rand(*input_shape) | |
img_metas = [{ | |
'img_shape': (H, W, C), | |
'ori_shape': (H, W, C), | |
'resize_shape': (H, W, C), | |
'filename': '<demo>.png', | |
'text': 'hello', | |
'valid_ratio': 1.0, | |
} for _ in range(N)] | |
mm_inputs = { | |
'imgs': torch.FloatTensor(imgs).requires_grad_(True), | |
'img_metas': img_metas | |
} | |
return mm_inputs | |
def _demo_gt_kernel_inputs(num_kernels=3, input_shape=(1, 3, 300, 300), | |
num_items=None): # yapf: disable | |
"""Create a superset of inputs needed to run test or train batches. | |
Args: | |
input_shape (tuple): Input batch dimensions. | |
num_items (None | list[int]): Specifies the number of boxes | |
for each batch item. | |
""" | |
from mmdet.core import BitmapMasks | |
(N, C, H, W) = input_shape | |
gt_kernels = [] | |
for batch_idx in range(N): | |
kernels = [] | |
for kernel_inx in range(num_kernels): | |
kernel = np.random.rand(H, W) | |
kernels.append(kernel) | |
gt_kernels.append(BitmapMasks(kernels, H, W)) | |
return gt_kernels | |
def _get_config_directory(): | |
"""Find the predefined detector config directory.""" | |
try: | |
# Assume we are running in the source mmocr repo | |
repo_dpath = dirname(dirname(dirname(__file__))) | |
except NameError: | |
# For IPython development when this __file__ is not defined | |
import mmocr | |
repo_dpath = dirname(dirname(mmocr.__file__)) | |
config_dpath = join(repo_dpath, 'configs') | |
if not exists(config_dpath): | |
raise Exception('Cannot find config path') | |
return config_dpath | |
def _get_config_module(fname): | |
"""Load a configuration as a python module.""" | |
from mmcv import Config | |
config_dpath = _get_config_directory() | |
config_fpath = join(config_dpath, fname) | |
config_mod = Config.fromfile(config_fpath) | |
return config_mod | |
def _get_detector_cfg(fname): | |
"""Grab configs necessary to create a detector. | |
These are deep copied to allow for safe modification of parameters without | |
influencing other tests. | |
""" | |
config = _get_config_module(fname) | |
model = copy.deepcopy(config.model) | |
return model | |
def test_recognizer_pipeline(cfg_file): | |
model = _get_detector_cfg(cfg_file) | |
model['pretrained'] = None | |
from mmocr.models import build_detector | |
detector = build_detector(model) | |
input_shape = (1, 3, 32, 160) | |
if 'crnn' in cfg_file: | |
input_shape = (1, 1, 32, 160) | |
mm_inputs = _demo_mm_inputs(0, input_shape) | |
gt_kernels = None | |
if 'seg' in cfg_file: | |
gt_kernels = _demo_gt_kernel_inputs(3, input_shape) | |
imgs = mm_inputs.pop('imgs') | |
img_metas = mm_inputs.pop('img_metas') | |
# Test forward train | |
if 'seg' in cfg_file: | |
losses = detector.forward(imgs, img_metas, gt_kernels=gt_kernels) | |
else: | |
losses = detector.forward(imgs, img_metas) | |
assert isinstance(losses, dict) | |
# Test forward test | |
with torch.no_grad(): | |
img_list = [g[None, :] for g in imgs] | |
batch_results = [] | |
for one_img, one_meta in zip(img_list, img_metas): | |
result = detector.forward([one_img], [[one_meta]], | |
return_loss=False) | |
batch_results.append(result) | |
# Test show_result | |
results = {'text': 'hello', 'score': 1.0} | |
img = np.random.rand(5, 5, 3) | |
detector.show_result(img, results) | |