Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import numpy as np | |
import pytest | |
import torch | |
from mmocr.models.textdet.postprocess import (DBPostprocessor, | |
FCEPostprocessor, | |
TextSnakePostprocessor) | |
from mmocr.models.textdet.postprocess.utils import comps2boundaries, poly_nms | |
def test_db_boxes_from_bitmaps(): | |
"""Test the boxes_from_bitmaps function in db_decoder.""" | |
pred = np.array([[[0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0], | |
[0.8, 0.8, 0.8, 0.8, 0], [0.8, 0.8, 0.8, 0.8, 0], | |
[0.8, 0.8, 0.8, 0.8, 0]]]) | |
preds = torch.FloatTensor(pred).requires_grad_(True) | |
db_decode = DBPostprocessor(text_repr_type='quad', min_text_width=0) | |
boxes = db_decode(preds) | |
assert len(boxes) == 1 | |
def test_fcenet_decode(): | |
k = 1 | |
preds = [] | |
preds.append(torch.ones(1, 4, 10, 10)) | |
preds.append(torch.ones(1, 4 * k + 2, 10, 10)) | |
fcenet_decode = FCEPostprocessor( | |
fourier_degree=k, num_reconstr_points=50, nms_thr=0.01) | |
boundaries = fcenet_decode(preds=preds, scale=1) | |
assert isinstance(boundaries, list) | |
def test_poly_nms(): | |
threshold = 0 | |
polygons = [] | |
polygons.append([10, 10, 10, 30, 30, 30, 30, 10, 0.95]) | |
polygons.append([15, 15, 15, 25, 25, 25, 25, 15, 0.9]) | |
polygons.append([40, 40, 40, 50, 50, 50, 50, 40, 0.85]) | |
polygons.append([5, 5, 5, 15, 15, 15, 15, 5, 0.7]) | |
keep_poly = poly_nms(polygons, threshold) | |
assert isinstance(keep_poly, list) | |
def test_comps2boundaries(): | |
# test comps2boundaries | |
x1 = np.arange(2, 18, 2) | |
x2 = x1 + 2 | |
y1 = np.ones(8) * 2 | |
y2 = y1 + 2 | |
comp_scores = np.ones(8, dtype=np.float32) * 0.9 | |
text_comps = np.stack([x1, y1, x2, y1, x2, y2, x1, y2, | |
comp_scores]).transpose() | |
comp_labels = np.array([1, 1, 1, 1, 1, 3, 5, 5]) | |
shuffle = [3, 2, 5, 7, 6, 0, 4, 1] | |
boundaries = comps2boundaries(text_comps[shuffle], comp_labels[shuffle]) | |
assert len(boundaries) == 3 | |
# test comps2boundaries with blank inputs | |
boundaries = comps2boundaries(text_comps[[]], comp_labels[[]]) | |
assert len(boundaries) == 0 | |
def test_textsnake_decode(): | |
maps = torch.zeros((1, 6, 224, 224), dtype=torch.float) | |
maps[:, 0:2, :, :] = -10. | |
maps[:, 0, 60:100, 50:170] = 10. | |
maps[:, 1, 75:85, 60:160] = 10. | |
maps[:, 2, 75:85, 60:160] = 0. | |
maps[:, 3, 75:85, 60:160] = 1. | |
maps[:, 4, 75:85, 60:160] = 10. | |
# test decoding with text center region of small area | |
maps[:, 0:2, 150:152, 5:7] = 10. | |
textsnake_decode = TextSnakePostprocessor() | |
results = textsnake_decode(torch.squeeze(maps)) | |
assert len(results) == 1 | |
# test decoding with small radius | |
maps.fill_(0.) | |
maps[:, 0:2, :, :] = -10. | |
maps[:, 0, 120:140, 20:40] = 10. | |
maps[:, 1, 120:140, 20:40] = 10. | |
maps[:, 2, 120:140, 20:40] = 0. | |
maps[:, 3, 120:140, 20:40] = 1. | |
maps[:, 4, 120:140, 20:40] = 0.5 | |
results = textsnake_decode(torch.squeeze(maps)) | |
assert len(results) == 0 | |
def test_db_decode(): | |
pred = torch.zeros((1, 8, 8)) | |
pred[0, 2:7, 2:7] = 0.8 | |
expect_result_quad = [[ | |
1.0, 8.0, 1.0, 1.0, 8.0, 1.0, 8.0, 8.0, 0.800000011920929 | |
]] | |
expect_result_poly = [[ | |
8, 2, 8, 6, 6, 8, 2, 8, 1, 6, 1, 2, 2, 1, 6, 1, 0.800000011920929 | |
]] | |
with pytest.raises(AssertionError): | |
DBPostprocessor(text_repr_type='dummpy') | |
db_decode = DBPostprocessor(text_repr_type='quad', min_text_width=1) | |
result_quad = db_decode(preds=pred) | |
db_decode = DBPostprocessor(text_repr_type='poly', min_text_width=1) | |
result_poly = db_decode(preds=pred) | |
assert result_quad == expect_result_quad | |
assert result_poly == expect_result_poly | |