Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import json | |
import os.path as osp | |
import time | |
import lmdb | |
import mmcv | |
import numpy as np | |
from scipy.io import loadmat | |
from shapely.geometry import Polygon | |
from mmocr.utils import check_argument | |
def trace_boundary(char_boxes): | |
"""Trace the boundary point of text. | |
Args: | |
char_boxes (list[ndarray]): The char boxes for one text. Each element | |
is 4x2 ndarray. | |
Returns: | |
boundary (ndarray): The boundary point sets with size nx2. | |
""" | |
assert check_argument.is_type_list(char_boxes, np.ndarray) | |
# from top left to to right | |
p_top = [box[0:2] for box in char_boxes] | |
# from bottom right to bottom left | |
p_bottom = [ | |
char_boxes[idx][[2, 3], :] | |
for idx in range(len(char_boxes) - 1, -1, -1) | |
] | |
p = p_top + p_bottom | |
boundary = np.concatenate(p).astype(int) | |
return boundary | |
def match_bbox_char_str(bboxes, char_bboxes, strs): | |
"""match the bboxes, char bboxes, and strs. | |
Args: | |
bboxes (ndarray): The text boxes of size (2, 4, num_box). | |
char_bboxes (ndarray): The char boxes of size (2, 4, num_char_box). | |
strs (ndarray): The string of size (num_strs,) | |
""" | |
assert isinstance(bboxes, np.ndarray) | |
assert isinstance(char_bboxes, np.ndarray) | |
assert isinstance(strs, np.ndarray) | |
bboxes = bboxes.astype(np.int32) | |
char_bboxes = char_bboxes.astype(np.int32) | |
if len(char_bboxes.shape) == 2: | |
char_bboxes = np.expand_dims(char_bboxes, axis=2) | |
char_bboxes = np.transpose(char_bboxes, (2, 1, 0)) | |
if len(bboxes.shape) == 2: | |
bboxes = np.expand_dims(bboxes, axis=2) | |
bboxes = np.transpose(bboxes, (2, 1, 0)) | |
chars = ''.join(strs).replace('\n', '').replace(' ', '') | |
num_boxes = bboxes.shape[0] | |
poly_list = [Polygon(bboxes[iter]) for iter in range(num_boxes)] | |
poly_box_list = [bboxes[iter] for iter in range(num_boxes)] | |
poly_char_list = [[] for iter in range(num_boxes)] | |
poly_char_idx_list = [[] for iter in range(num_boxes)] | |
poly_charbox_list = [[] for iter in range(num_boxes)] | |
words = [] | |
for s in strs: | |
words += s.split() | |
words_len = [len(w) for w in words] | |
words_end_inx = np.cumsum(words_len) | |
start_inx = 0 | |
for word_inx, end_inx in enumerate(words_end_inx): | |
for char_inx in range(start_inx, end_inx): | |
poly_char_idx_list[word_inx].append(char_inx) | |
poly_char_list[word_inx].append(chars[char_inx]) | |
poly_charbox_list[word_inx].append(char_bboxes[char_inx]) | |
start_inx = end_inx | |
for box_inx in range(num_boxes): | |
assert len(poly_charbox_list[box_inx]) > 0 | |
poly_boundary_list = [] | |
for item in poly_charbox_list: | |
boundary = np.ndarray((0, 2)) | |
if len(item) > 0: | |
boundary = trace_boundary(item) | |
poly_boundary_list.append(boundary) | |
return (poly_list, poly_box_list, poly_boundary_list, poly_charbox_list, | |
poly_char_idx_list, poly_char_list) | |
def convert_annotations(root_path, gt_name, lmdb_name): | |
"""Convert the annotation into lmdb dataset. | |
Args: | |
root_path (str): The root path of dataset. | |
gt_name (str): The ground truth filename. | |
lmdb_name (str): The output lmdb filename. | |
""" | |
assert isinstance(root_path, str) | |
assert isinstance(gt_name, str) | |
assert isinstance(lmdb_name, str) | |
start_time = time.time() | |
gt = loadmat(gt_name) | |
img_num = len(gt['imnames'][0]) | |
env = lmdb.open(lmdb_name, map_size=int(1e9 * 40)) | |
with env.begin(write=True) as txn: | |
for img_id in range(img_num): | |
if img_id % 1000 == 0 and img_id > 0: | |
total_time_sec = time.time() - start_time | |
avg_time_sec = total_time_sec / img_id | |
eta_mins = (avg_time_sec * (img_num - img_id)) / 60 | |
print(f'\ncurrent_img/total_imgs {img_id}/{img_num} | ' | |
f'eta: {eta_mins:.3f} mins') | |
# for each img | |
img_file = osp.join(root_path, 'imgs', gt['imnames'][0][img_id][0]) | |
img = mmcv.imread(img_file, 'unchanged') | |
height, width = img.shape[0:2] | |
img_json = {} | |
img_json['file_name'] = gt['imnames'][0][img_id][0] | |
img_json['height'] = height | |
img_json['width'] = width | |
img_json['annotations'] = [] | |
wordBB = gt['wordBB'][0][img_id] | |
charBB = gt['charBB'][0][img_id] | |
txt = gt['txt'][0][img_id] | |
poly_list, _, poly_boundary_list, _, _, _ = match_bbox_char_str( | |
wordBB, charBB, txt) | |
for poly_inx in range(len(poly_list)): | |
polygon = poly_list[poly_inx] | |
min_x, min_y, max_x, max_y = polygon.bounds | |
bbox = [min_x, min_y, max_x - min_x, max_y - min_y] | |
anno_info = dict() | |
anno_info['iscrowd'] = 0 | |
anno_info['category_id'] = 1 | |
anno_info['bbox'] = bbox | |
anno_info['segmentation'] = [ | |
poly_boundary_list[poly_inx].flatten().tolist() | |
] | |
img_json['annotations'].append(anno_info) | |
string = json.dumps(img_json) | |
txn.put(str(img_id).encode('utf8'), string.encode('utf8')) | |
key = 'total_number'.encode('utf8') | |
value = str(img_num).encode('utf8') | |
txn.put(key, value) | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert synthtext to lmdb dataset') | |
parser.add_argument('synthtext_path', help='synthetic root path') | |
parser.add_argument('-o', '--out-dir', help='output path') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
synthtext_path = args.synthtext_path | |
out_dir = args.out_dir if args.out_dir else synthtext_path | |
mmcv.mkdir_or_exist(out_dir) | |
gt_name = osp.join(synthtext_path, 'gt.mat') | |
lmdb_name = 'synthtext.lmdb' | |
convert_annotations(synthtext_path, gt_name, osp.join(out_dir, lmdb_name)) | |
if __name__ == '__main__': | |
main() | |