Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import math | |
import os.path as osp | |
import mmcv | |
from mmocr.utils import convert_annotations | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Generate training and validation set of TextOCR ') | |
parser.add_argument('root_path', help='Root dir path of TextOCR') | |
args = parser.parse_args() | |
return args | |
def collect_textocr_info(root_path, annotation_filename, print_every=1000): | |
annotation_path = osp.join(root_path, annotation_filename) | |
if not osp.exists(annotation_path): | |
raise Exception( | |
f'{annotation_path} not exists, please check and try again.') | |
annotation = mmcv.load(annotation_path) | |
# img_idx = img_start_idx | |
img_infos = [] | |
for i, img_info in enumerate(annotation['imgs'].values()): | |
if i > 0 and i % print_every == 0: | |
print(f'{i}/{len(annotation["imgs"].values())}') | |
img_info['segm_file'] = annotation_path | |
ann_ids = annotation['imgToAnns'][img_info['id']] | |
anno_info = [] | |
for ann_id in ann_ids: | |
ann = annotation['anns'][ann_id] | |
# Ignore illegible or non-English words | |
text_label = ann['utf8_string'] | |
iscrowd = 1 if text_label == '.' else 0 | |
x, y, w, h = ann['bbox'] | |
x, y = max(0, math.floor(x)), max(0, math.floor(y)) | |
w, h = math.ceil(w), math.ceil(h) | |
bbox = [x, y, w, h] | |
segmentation = [max(0, int(x)) for x in ann['points']] | |
anno = dict( | |
iscrowd=iscrowd, | |
category_id=1, | |
bbox=bbox, | |
area=ann['area'], | |
segmentation=[segmentation]) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
img_infos.append(img_info) | |
return img_infos | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
print('Processing training set...') | |
training_infos = collect_textocr_info(root_path, 'TextOCR_0.1_train.json') | |
convert_annotations(training_infos, | |
osp.join(root_path, 'instances_training.json')) | |
print('Processing validation set...') | |
val_infos = collect_textocr_info(root_path, 'TextOCR_0.1_val.json') | |
convert_annotations(val_infos, osp.join(root_path, 'instances_val.json')) | |
print('Finish') | |
if __name__ == '__main__': | |
main() | |