Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import argparse | |
import glob | |
import os | |
import os.path as osp | |
import re | |
import cv2 | |
import mmcv | |
import numpy as np | |
import scipy.io as scio | |
import yaml | |
from shapely.geometry import Polygon | |
from mmocr.utils import convert_annotations | |
def collect_files(img_dir, gt_dir, split): | |
"""Collect all images and their corresponding groundtruth files. | |
Args: | |
img_dir(str): The image directory | |
gt_dir(str): The groundtruth directory | |
split(str): The split of dataset. Namely: training or test | |
Returns: | |
files(list): The list of tuples (img_file, groundtruth_file) | |
""" | |
assert isinstance(img_dir, str) | |
assert img_dir | |
assert isinstance(gt_dir, str) | |
assert gt_dir | |
# note that we handle png and jpg only. Pls convert others such as gif to | |
# jpg or png offline | |
suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG'] | |
# suffixes = ['.png'] | |
imgs_list = [] | |
for suffix in suffixes: | |
imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix))) | |
imgs_list = sorted(imgs_list) | |
ann_list = sorted( | |
[osp.join(gt_dir, gt_file) for gt_file in os.listdir(gt_dir)]) | |
files = list(zip(imgs_list, ann_list)) | |
assert len(files), f'No images found in {img_dir}' | |
print(f'Loaded {len(files)} images from {img_dir}') | |
return files | |
def collect_annotations(files, nproc=1): | |
"""Collect the annotation information. | |
Args: | |
files(list): The list of tuples (image_file, groundtruth_file) | |
nproc(int): The number of process to collect annotations | |
Returns: | |
images(list): The list of image information dicts | |
""" | |
assert isinstance(files, list) | |
assert isinstance(nproc, int) | |
if nproc > 1: | |
images = mmcv.track_parallel_progress( | |
load_img_info, files, nproc=nproc) | |
else: | |
images = mmcv.track_progress(load_img_info, files) | |
return images | |
def get_contours_mat(gt_path): | |
"""Get the contours and words for each ground_truth mat file. | |
Args: | |
gt_path(str): The relative path of the ground_truth mat file | |
Returns: | |
contours(list[lists]): A list of lists of contours | |
for the text instances | |
words(list[list]): A list of lists of words (string) | |
for the text instances | |
""" | |
assert isinstance(gt_path, str) | |
contours = [] | |
words = [] | |
data = scio.loadmat(gt_path) | |
# 'gt' for the latest version; 'polygt' for the legacy version | |
data_polygt = data.get('polygt', data['gt']) | |
for i, lines in enumerate(data_polygt): | |
X = np.array(lines[1]) | |
Y = np.array(lines[3]) | |
point_num = len(X[0]) | |
word = lines[4] | |
if len(word) == 0: | |
word = '???' | |
else: | |
word = word[0] | |
if word == '#': | |
word = '###' | |
continue | |
words.append(word) | |
arr = np.concatenate([X, Y]).T | |
contour = [] | |
for i in range(point_num): | |
contour.append(arr[i][0]) | |
contour.append(arr[i][1]) | |
contours.append(np.asarray(contour)) | |
return contours, words | |
def load_mat_info(img_info, gt_file): | |
"""Load the information of one ground truth in .mat format. | |
Args: | |
img_info(dict): The dict of only the image information | |
gt_file(str): The relative path of the ground_truth mat | |
file for one image | |
Returns: | |
img_info(dict): The dict of the img and annotation information | |
""" | |
assert isinstance(img_info, dict) | |
assert isinstance(gt_file, str) | |
contours, texts = get_contours_mat(gt_file) | |
anno_info = [] | |
for contour, text in zip(contours, texts): | |
if contour.shape[0] == 2: | |
continue | |
category_id = 1 | |
coordinates = np.array(contour).reshape(-1, 2) | |
polygon = Polygon(coordinates) | |
iscrowd = 0 | |
area = polygon.area | |
# convert to COCO style XYWH format | |
min_x, min_y, max_x, max_y = polygon.bounds | |
bbox = [min_x, min_y, max_x - min_x, max_y - min_y] | |
anno = dict( | |
iscrowd=iscrowd, | |
category_id=category_id, | |
bbox=bbox, | |
area=area, | |
text=text, | |
segmentation=[contour]) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def process_line(line, contours, words): | |
"""Get the contours and words by processing each line in the gt file. | |
Args: | |
line(str): The line in gt file containing annotation info | |
contours(list[lists]): A list of lists of contours | |
for the text instances | |
words(list[list]): A list of lists of words (string) | |
for the text instances | |
Returns: | |
contours(list[lists]): A list of lists of contours | |
for the text instances | |
words(list[list]): A list of lists of words (string) | |
for the text instances | |
""" | |
line = '{' + line.replace('[[', '[').replace(']]', ']') + '}' | |
ann_dict = re.sub('([0-9]) +([0-9])', r'\1,\2', line) | |
ann_dict = re.sub('([0-9]) +([ 0-9])', r'\1,\2', ann_dict) | |
ann_dict = re.sub('([0-9]) -([0-9])', r'\1,-\2', ann_dict) | |
ann_dict = ann_dict.replace("[u',']", "[u'#']") | |
ann_dict = yaml.safe_load(ann_dict) | |
X = np.array([ann_dict['x']]) | |
Y = np.array([ann_dict['y']]) | |
if len(ann_dict['transcriptions']) == 0: | |
word = '???' | |
else: | |
word = ann_dict['transcriptions'][0] | |
if len(ann_dict['transcriptions']) > 1: | |
for ann_word in ann_dict['transcriptions'][1:]: | |
word += ',' + ann_word | |
word = str(eval(word)) | |
words.append(word) | |
point_num = len(X[0]) | |
arr = np.concatenate([X, Y]).T | |
contour = [] | |
for i in range(point_num): | |
contour.append(arr[i][0]) | |
contour.append(arr[i][1]) | |
contours.append(np.asarray(contour)) | |
return contours, words | |
def get_contours_txt(gt_path): | |
"""Get the contours and words for each ground_truth txt file. | |
Args: | |
gt_path(str): The relative path of the ground_truth mat file | |
Returns: | |
contours(list[lists]): A list of lists of contours | |
for the text instances | |
words(list[list]): A list of lists of words (string) | |
for the text instances | |
""" | |
assert isinstance(gt_path, str) | |
contours = [] | |
words = [] | |
with open(gt_path, 'r') as f: | |
tmp_line = '' | |
for idx, line in enumerate(f): | |
line = line.strip() | |
if idx == 0: | |
tmp_line = line | |
continue | |
if not line.startswith('x:'): | |
tmp_line += ' ' + line | |
continue | |
else: | |
complete_line = tmp_line | |
tmp_line = line | |
contours, words = process_line(complete_line, contours, words) | |
if tmp_line != '': | |
contours, words = process_line(tmp_line, contours, words) | |
words = ['###' if word == '#' else word for word in words] | |
return contours, words | |
def load_txt_info(gt_file, img_info): | |
"""Load the information of one ground truth in .txt format. | |
Args: | |
img_info(dict): The dict of only the image information | |
gt_file(str): The relative path of the ground_truth mat | |
file for one image | |
Returns: | |
img_info(dict): The dict of the img and annotation information | |
""" | |
contours, texts = get_contours_txt(gt_file) | |
anno_info = [] | |
for contour, text in zip(contours, texts): | |
if contour.shape[0] == 2: | |
continue | |
category_id = 1 | |
coordinates = np.array(contour).reshape(-1, 2) | |
polygon = Polygon(coordinates) | |
iscrowd = 0 | |
area = polygon.area | |
# convert to COCO style XYWH format | |
min_x, min_y, max_x, max_y = polygon.bounds | |
bbox = [min_x, min_y, max_x - min_x, max_y - min_y] | |
anno = dict( | |
iscrowd=iscrowd, | |
category_id=category_id, | |
bbox=bbox, | |
area=area, | |
text=text, | |
segmentation=[contour]) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def load_png_info(gt_file, img_info): | |
"""Load the information of one ground truth in .png format. | |
Args: | |
gt_file(str): The relative path of the ground_truth file for one image | |
img_info(dict): The dict of only the image information | |
Returns: | |
img_info(dict): The dict of the img and annotation information | |
""" | |
assert isinstance(gt_file, str) | |
assert isinstance(img_info, dict) | |
gt_img = cv2.imread(gt_file, 0) | |
contours, _ = cv2.findContours(gt_img, cv2.RETR_EXTERNAL, | |
cv2.CHAIN_APPROX_SIMPLE) | |
anno_info = [] | |
for contour in contours: | |
if contour.shape[0] == 2: | |
continue | |
category_id = 1 | |
xy = np.array(contour).flatten().tolist() | |
coordinates = np.array(contour).reshape(-1, 2) | |
polygon = Polygon(coordinates) | |
iscrowd = 0 | |
area = polygon.area | |
# convert to COCO style XYWH format | |
min_x, min_y, max_x, max_y = polygon.bounds | |
bbox = [min_x, min_y, max_x - min_x, max_y - min_y] | |
anno = dict( | |
iscrowd=iscrowd, | |
category_id=category_id, | |
bbox=bbox, | |
area=area, | |
segmentation=[xy]) | |
anno_info.append(anno) | |
img_info.update(anno_info=anno_info) | |
return img_info | |
def load_img_info(files): | |
"""Load the information of one image. | |
Args: | |
files(tuple): The tuple of (img_file, groundtruth_file) | |
Returns: | |
img_info(dict): The dict of the img and annotation information | |
""" | |
assert isinstance(files, tuple) | |
img_file, gt_file = files | |
# read imgs with ignoring orientations | |
img = mmcv.imread(img_file, 'unchanged') | |
split_name = osp.basename(osp.dirname(img_file)) | |
img_info = dict( | |
# remove img_prefix for filename | |
file_name=osp.join(split_name, osp.basename(img_file)), | |
height=img.shape[0], | |
width=img.shape[1], | |
# anno_info=anno_info, | |
segm_file=osp.join(split_name, osp.basename(gt_file))) | |
if osp.splitext(gt_file)[1] == '.mat': | |
img_info = load_mat_info(img_info, gt_file) | |
elif osp.splitext(gt_file)[1] == '.txt': | |
img_info = load_txt_info(gt_file, img_info) | |
else: | |
raise NotImplementedError | |
return img_info | |
def parse_args(): | |
parser = argparse.ArgumentParser( | |
description='Convert totaltext annotations to COCO format') | |
parser.add_argument('root_path', help='totaltext root path') | |
parser.add_argument('-o', '--out-dir', help='output path') | |
parser.add_argument( | |
'--split-list', | |
nargs='+', | |
help='a list of splits. e.g., "--split_list training test"') | |
parser.add_argument( | |
'--nproc', default=1, type=int, help='number of process') | |
args = parser.parse_args() | |
return args | |
def main(): | |
args = parse_args() | |
root_path = args.root_path | |
out_dir = args.out_dir if args.out_dir else root_path | |
mmcv.mkdir_or_exist(out_dir) | |
img_dir = osp.join(root_path, 'imgs') | |
gt_dir = osp.join(root_path, 'annotations') | |
set_name = {} | |
for split in args.split_list: | |
set_name.update({split: 'instances_' + split + '.json'}) | |
assert osp.exists(osp.join(img_dir, split)) | |
for split, json_name in set_name.items(): | |
print(f'Converting {split} into {json_name}') | |
with mmcv.Timer( | |
print_tmpl='It takes {}s to convert totaltext annotation'): | |
files = collect_files( | |
osp.join(img_dir, split), osp.join(gt_dir, split), split) | |
image_infos = collect_annotations(files, nproc=args.nproc) | |
convert_annotations(image_infos, osp.join(out_dir, json_name)) | |
if __name__ == '__main__': | |
main() | |