MMOCR / tools /data /textrecog /textocr_converter.py
tomofi's picture
Add application file
2366e36
raw
history blame
3.5 kB
# Copyright (c) OpenMMLab. All rights reserved.
import argparse
import math
import os
import os.path as osp
from functools import partial
import mmcv
from mmocr.utils.fileio import list_to_file
def parse_args():
parser = argparse.ArgumentParser(
description='Generate training and validation set of TextOCR '
'by cropping box image.')
parser.add_argument('root_path', help='Root dir path of TextOCR')
parser.add_argument(
'n_proc', default=1, type=int, help='Number of processes to run')
args = parser.parse_args()
return args
def process_img(args, src_image_root, dst_image_root):
# Dirty hack for multi-processing
img_idx, img_info, anns = args
src_img = mmcv.imread(osp.join(src_image_root, img_info['file_name']))
labels = []
for ann_idx, ann in enumerate(anns):
text_label = ann['utf8_string']
# Ignore illegible or non-English words
if text_label == '.':
continue
x, y, w, h = ann['bbox']
x, y = max(0, math.floor(x)), max(0, math.floor(y))
w, h = math.ceil(w), math.ceil(h)
dst_img = src_img[y:y + h, x:x + w]
dst_img_name = f'img_{img_idx}_{ann_idx}.jpg'
dst_img_path = osp.join(dst_image_root, dst_img_name)
mmcv.imwrite(dst_img, dst_img_path)
labels.append(f'{osp.basename(dst_image_root)}/{dst_img_name}'
f' {text_label}')
return labels
def convert_textocr(root_path,
dst_image_path,
dst_label_filename,
annotation_filename,
img_start_idx=0,
nproc=1):
annotation_path = osp.join(root_path, annotation_filename)
if not osp.exists(annotation_path):
raise Exception(
f'{annotation_path} not exists, please check and try again.')
src_image_root = root_path
# outputs
dst_label_file = osp.join(root_path, dst_label_filename)
dst_image_root = osp.join(root_path, dst_image_path)
os.makedirs(dst_image_root, exist_ok=True)
annotation = mmcv.load(annotation_path)
process_img_with_path = partial(
process_img,
src_image_root=src_image_root,
dst_image_root=dst_image_root)
tasks = []
for img_idx, img_info in enumerate(annotation['imgs'].values()):
ann_ids = annotation['imgToAnns'][img_info['id']]
anns = [annotation['anns'][ann_id] for ann_id in ann_ids]
tasks.append((img_idx + img_start_idx, img_info, anns))
labels_list = mmcv.track_parallel_progress(
process_img_with_path, tasks, keep_order=True, nproc=nproc)
final_labels = []
for label_list in labels_list:
final_labels += label_list
list_to_file(dst_label_file, final_labels)
return len(annotation['imgs'])
def main():
args = parse_args()
root_path = args.root_path
print('Processing training set...')
num_train_imgs = convert_textocr(
root_path=root_path,
dst_image_path='image',
dst_label_filename='train_label.txt',
annotation_filename='TextOCR_0.1_train.json',
nproc=args.n_proc)
print('Processing validation set...')
convert_textocr(
root_path=root_path,
dst_image_path='image',
dst_label_filename='val_label.txt',
annotation_filename='TextOCR_0.1_val.json',
img_start_idx=num_train_imgs,
nproc=args.n_proc)
print('Finish')
if __name__ == '__main__':
main()