Spaces:
Runtime error
Runtime error
#!/usr/bin/env python | |
# Copyright (c) OpenMMLab. All rights reserved. | |
import copy | |
import os | |
import warnings | |
from argparse import ArgumentParser, Namespace | |
from pathlib import Path | |
import mmcv | |
import numpy as np | |
import torch | |
from mmcv.image.misc import tensor2imgs | |
from mmcv.runner import load_checkpoint | |
from mmcv.utils.config import Config | |
from mmocr.apis import init_detector | |
from mmocr.apis.inference import model_inference | |
from mmocr.core.visualize import det_recog_show_result | |
from mmocr.datasets.kie_dataset import KIEDataset | |
from mmocr.datasets.pipelines.crop import crop_img | |
from mmocr.models import build_detector | |
from mmocr.utils.box_util import stitch_boxes_into_lines | |
from mmocr.utils.fileio import list_from_file | |
from mmocr.utils.model import revert_sync_batchnorm | |
# Parse CLI arguments | |
def parse_args(): | |
parser = ArgumentParser() | |
parser.add_argument( | |
'img', type=str, help='Input image file or folder path.') | |
parser.add_argument( | |
'--output', | |
type=str, | |
default='', | |
help='Output file/folder name for visualization') | |
parser.add_argument( | |
'--det', | |
type=str, | |
default='PANet_IC15', | |
help='Pretrained text detection algorithm') | |
parser.add_argument( | |
'--det-config', | |
type=str, | |
default='', | |
help='Path to the custom config file of the selected det model. It ' | |
'overrides the settings in det') | |
parser.add_argument( | |
'--det-ckpt', | |
type=str, | |
default='', | |
help='Path to the custom checkpoint file of the selected det model. ' | |
'It overrides the settings in det') | |
parser.add_argument( | |
'--recog', | |
type=str, | |
default='SEG', | |
help='Pretrained text recognition algorithm') | |
parser.add_argument( | |
'--recog-config', | |
type=str, | |
default='', | |
help='Path to the custom config file of the selected recog model. It' | |
'overrides the settings in recog') | |
parser.add_argument( | |
'--recog-ckpt', | |
type=str, | |
default='', | |
help='Path to the custom checkpoint file of the selected recog model. ' | |
'It overrides the settings in recog') | |
parser.add_argument( | |
'--kie', | |
type=str, | |
default='', | |
help='Pretrained key information extraction algorithm') | |
parser.add_argument( | |
'--kie-config', | |
type=str, | |
default='', | |
help='Path to the custom config file of the selected kie model. It' | |
'overrides the settings in kie') | |
parser.add_argument( | |
'--kie-ckpt', | |
type=str, | |
default='', | |
help='Path to the custom checkpoint file of the selected kie model. ' | |
'It overrides the settings in kie') | |
parser.add_argument( | |
'--config-dir', | |
type=str, | |
default=os.path.join(str(Path.cwd()), 'configs/'), | |
help='Path to the config directory where all the config files ' | |
'are located. Defaults to "configs/"') | |
parser.add_argument( | |
'--batch-mode', | |
action='store_true', | |
help='Whether use batch mode for inference') | |
parser.add_argument( | |
'--recog-batch-size', | |
type=int, | |
default=0, | |
help='Batch size for text recognition') | |
parser.add_argument( | |
'--det-batch-size', | |
type=int, | |
default=0, | |
help='Batch size for text detection') | |
parser.add_argument( | |
'--single-batch-size', | |
type=int, | |
default=0, | |
help='Batch size for separate det/recog inference') | |
parser.add_argument( | |
'--device', default=None, help='Device used for inference.') | |
parser.add_argument( | |
'--export', | |
type=str, | |
default='', | |
help='Folder where the results of each image are exported') | |
parser.add_argument( | |
'--export-format', | |
type=str, | |
default='json', | |
help='Format of the exported result file(s)') | |
parser.add_argument( | |
'--details', | |
action='store_true', | |
help='Whether include the text boxes coordinates and confidence values' | |
) | |
parser.add_argument( | |
'--imshow', | |
action='store_true', | |
help='Whether show image with OpenCV.') | |
parser.add_argument( | |
'--print-result', | |
action='store_true', | |
help='Prints the recognised text') | |
parser.add_argument( | |
'--merge', action='store_true', help='Merge neighboring boxes') | |
parser.add_argument( | |
'--merge-xdist', | |
type=float, | |
default=20, | |
help='The maximum x-axis distance to merge boxes') | |
args = parser.parse_args() | |
if args.det == 'None': | |
args.det = None | |
if args.recog == 'None': | |
args.recog = None | |
# Warnings | |
if args.merge and not (args.det and args.recog): | |
warnings.warn( | |
'Box merging will not work if the script is not' | |
' running in detection + recognition mode.', UserWarning) | |
if not os.path.samefile(args.config_dir, os.path.join(str( | |
Path.cwd()))) and (args.det_config != '' | |
or args.recog_config != ''): | |
warnings.warn( | |
'config_dir will be overridden by det-config or recog-config.', | |
UserWarning) | |
return args | |
class MMOCR: | |
def __init__(self, | |
det='PANet_IC15', | |
det_config='', | |
det_ckpt='', | |
recog='SEG', | |
recog_config='', | |
recog_ckpt='', | |
kie='', | |
kie_config='', | |
kie_ckpt='', | |
config_dir=os.path.join(str(Path.cwd()), 'configs/'), | |
device=None, | |
**kwargs): | |
textdet_models = { | |
'DB_r18': { | |
'config': | |
'dbnet/dbnet_r18_fpnc_1200e_icdar2015.py', | |
'ckpt': | |
'dbnet/' | |
'dbnet_r18_fpnc_sbn_1200e_icdar2015_20210329-ba3ab597.pth' | |
}, | |
'DB_r50': { | |
'config': | |
'dbnet/dbnet_r50dcnv2_fpnc_1200e_icdar2015.py', | |
'ckpt': | |
'dbnet/' | |
'dbnet_r50dcnv2_fpnc_sbn_1200e_icdar2015_20211025-9fe3b590.pth' | |
}, | |
'DRRG': { | |
'config': | |
'drrg/drrg_r50_fpn_unet_1200e_ctw1500.py', | |
'ckpt': | |
'drrg/drrg_r50_fpn_unet_1200e_ctw1500_20211022-fb30b001.pth' | |
}, | |
'FCE_IC15': { | |
'config': | |
'fcenet/fcenet_r50_fpn_1500e_icdar2015.py', | |
'ckpt': | |
'fcenet/fcenet_r50_fpn_1500e_icdar2015_20211022-daefb6ed.pth' | |
}, | |
'FCE_CTW_DCNv2': { | |
'config': | |
'fcenet/fcenet_r50dcnv2_fpn_1500e_ctw1500.py', | |
'ckpt': | |
'fcenet/' + | |
'fcenet_r50dcnv2_fpn_1500e_ctw1500_20211022-e326d7ec.pth' | |
}, | |
'MaskRCNN_CTW': { | |
'config': | |
'maskrcnn/mask_rcnn_r50_fpn_160e_ctw1500.py', | |
'ckpt': | |
'maskrcnn/' | |
'mask_rcnn_r50_fpn_160e_ctw1500_20210219-96497a76.pth' | |
}, | |
'MaskRCNN_IC15': { | |
'config': | |
'maskrcnn/mask_rcnn_r50_fpn_160e_icdar2015.py', | |
'ckpt': | |
'maskrcnn/' | |
'mask_rcnn_r50_fpn_160e_icdar2015_20210219-8eb340a3.pth' | |
}, | |
'MaskRCNN_IC17': { | |
'config': | |
'maskrcnn/mask_rcnn_r50_fpn_160e_icdar2017.py', | |
'ckpt': | |
'maskrcnn/' | |
'mask_rcnn_r50_fpn_160e_icdar2017_20210218-c6ec3ebb.pth' | |
}, | |
'PANet_CTW': { | |
'config': | |
'panet/panet_r18_fpem_ffm_600e_ctw1500.py', | |
'ckpt': | |
'panet/' | |
'panet_r18_fpem_ffm_sbn_600e_ctw1500_20210219-3b3a9aa3.pth' | |
}, | |
'PANet_IC15': { | |
'config': | |
'panet/panet_r18_fpem_ffm_600e_icdar2015.py', | |
'ckpt': | |
'panet/' | |
'panet_r18_fpem_ffm_sbn_600e_icdar2015_20210219-42dbe46a.pth' | |
}, | |
'PS_CTW': { | |
'config': 'psenet/psenet_r50_fpnf_600e_ctw1500.py', | |
'ckpt': | |
'psenet/psenet_r50_fpnf_600e_ctw1500_20210401-216fed50.pth' | |
}, | |
'PS_IC15': { | |
'config': | |
'psenet/psenet_r50_fpnf_600e_icdar2015.py', | |
'ckpt': | |
'psenet/psenet_r50_fpnf_600e_icdar2015_pretrain-eefd8fe6.pth' | |
}, | |
'TextSnake': { | |
'config': | |
'textsnake/textsnake_r50_fpn_unet_1200e_ctw1500.py', | |
'ckpt': | |
'textsnake/textsnake_r50_fpn_unet_1200e_ctw1500-27f65b64.pth' | |
} | |
} | |
textrecog_models = { | |
'CRNN': { | |
'config': 'crnn/crnn_academic_dataset.py', | |
'ckpt': 'crnn/crnn_academic-a723a1c5.pth' | |
}, | |
'SAR': { | |
'config': 'sar/sar_r31_parallel_decoder_academic.py', | |
'ckpt': 'sar/sar_r31_parallel_decoder_academic-dba3a4a3.pth' | |
}, | |
'SAR_CN': { | |
'config': | |
'sar/sar_r31_parallel_decoder_chinese.py', | |
'ckpt': | |
'sar/sar_r31_parallel_decoder_chineseocr_20210507-b4be8214.pth' | |
}, | |
'NRTR_1/16-1/8': { | |
'config': 'nrtr/nrtr_r31_1by16_1by8_academic.py', | |
'ckpt': | |
'nrtr/nrtr_r31_1by16_1by8_academic_20211124-f60cebf4.pth' | |
}, | |
'NRTR_1/8-1/4': { | |
'config': 'nrtr/nrtr_r31_1by8_1by4_academic.py', | |
'ckpt': | |
'nrtr/nrtr_r31_1by8_1by4_academic_20211123-e1fdb322.pth' | |
}, | |
'RobustScanner': { | |
'config': 'robust_scanner/robustscanner_r31_academic.py', | |
'ckpt': 'robustscanner/robustscanner_r31_academic-5f05874f.pth' | |
}, | |
'SATRN': { | |
'config': 'satrn/satrn_academic.py', | |
'ckpt': 'satrn/satrn_academic_20211009-cb8b1580.pth' | |
}, | |
'SATRN_sm': { | |
'config': 'satrn/satrn_small.py', | |
'ckpt': 'satrn/satrn_small_20211009-2cf13355.pth' | |
}, | |
'ABINet': { | |
'config': 'abinet/abinet_academic.py', | |
'ckpt': 'abinet/abinet_academic-f718abf6.pth' | |
}, | |
'SEG': { | |
'config': 'seg/seg_r31_1by16_fpnocr_academic.py', | |
'ckpt': 'seg/seg_r31_1by16_fpnocr_academic-72235b11.pth' | |
}, | |
'CRNN_TPS': { | |
'config': 'tps/crnn_tps_academic_dataset.py', | |
'ckpt': 'tps/crnn_tps_academic_dataset_20210510-d221a905.pth' | |
} | |
} | |
kie_models = { | |
'SDMGR': { | |
'config': 'sdmgr/sdmgr_unet16_60e_wildreceipt.py', | |
'ckpt': | |
'sdmgr/sdmgr_unet16_60e_wildreceipt_20210520-7489e6de.pth' | |
} | |
} | |
self.td = det | |
self.tr = recog | |
self.kie = kie | |
self.device = device | |
if self.device is None: | |
self.device = torch.device( | |
'cuda' if torch.cuda.is_available() else 'cpu') | |
# Check if the det/recog model choice is valid | |
if self.td and self.td not in textdet_models: | |
raise ValueError(self.td, | |
'is not a supported text detection algorthm') | |
elif self.tr and self.tr not in textrecog_models: | |
raise ValueError(self.tr, | |
'is not a supported text recognition algorithm') | |
elif self.kie: | |
if self.kie not in kie_models: | |
raise ValueError( | |
self.kie, 'is not a supported key information extraction' | |
' algorithm') | |
elif not (self.td and self.tr): | |
raise NotImplementedError( | |
self.kie, 'has to run together' | |
' with text detection and recognition algorithms.') | |
self.detect_model = None | |
if self.td: | |
# Build detection model | |
if not det_config: | |
det_config = os.path.join(config_dir, 'textdet/', | |
textdet_models[self.td]['config']) | |
if not det_ckpt: | |
det_ckpt = 'https://download.openmmlab.com/mmocr/textdet/' + \ | |
textdet_models[self.td]['ckpt'] | |
self.detect_model = init_detector( | |
det_config, det_ckpt, device=self.device) | |
self.detect_model = revert_sync_batchnorm(self.detect_model) | |
self.recog_model = None | |
if self.tr: | |
# Build recognition model | |
if not recog_config: | |
recog_config = os.path.join( | |
config_dir, 'textrecog/', | |
textrecog_models[self.tr]['config']) | |
if not recog_ckpt: | |
recog_ckpt = 'https://download.openmmlab.com/mmocr/' + \ | |
'textrecog/' + textrecog_models[self.tr]['ckpt'] | |
self.recog_model = init_detector( | |
recog_config, recog_ckpt, device=self.device) | |
self.recog_model = revert_sync_batchnorm(self.recog_model) | |
self.kie_model = None | |
if self.kie: | |
# Build key information extraction model | |
if not kie_config: | |
kie_config = os.path.join(config_dir, 'kie/', | |
kie_models[self.kie]['config']) | |
if not kie_ckpt: | |
kie_ckpt = 'https://download.openmmlab.com/mmocr/' + \ | |
'kie/' + kie_models[self.kie]['ckpt'] | |
kie_cfg = Config.fromfile(kie_config) | |
self.kie_model = build_detector( | |
kie_cfg.model, test_cfg=kie_cfg.get('test_cfg')) | |
self.kie_model = revert_sync_batchnorm(self.kie_model) | |
self.kie_model.cfg = kie_cfg | |
load_checkpoint(self.kie_model, kie_ckpt, map_location=self.device) | |
# Attribute check | |
for model in list(filter(None, [self.recog_model, self.detect_model])): | |
if hasattr(model, 'module'): | |
model = model.module | |
def readtext(self, | |
img, | |
output=None, | |
details=False, | |
export=None, | |
export_format='json', | |
batch_mode=False, | |
recog_batch_size=0, | |
det_batch_size=0, | |
single_batch_size=0, | |
imshow=False, | |
print_result=False, | |
merge=False, | |
merge_xdist=20, | |
**kwargs): | |
args = locals().copy() | |
[args.pop(x, None) for x in ['kwargs', 'self']] | |
args = Namespace(**args) | |
# Input and output arguments processing | |
self._args_processing(args) | |
self.args = args | |
pp_result = None | |
# Send args and models to the MMOCR model inference API | |
# and call post-processing functions for the output | |
if self.detect_model and self.recog_model: | |
det_recog_result = self.det_recog_kie_inference( | |
self.detect_model, self.recog_model, kie_model=self.kie_model) | |
pp_result = self.det_recog_pp(det_recog_result) | |
else: | |
for model in list( | |
filter(None, [self.recog_model, self.detect_model])): | |
result = self.single_inference(model, args.arrays, | |
args.batch_mode, | |
args.single_batch_size) | |
pp_result = self.single_pp(result, model) | |
return pp_result | |
# Post processing function for end2end ocr | |
def det_recog_pp(self, result): | |
final_results = [] | |
args = self.args | |
for arr, output, export, det_recog_result in zip( | |
args.arrays, args.output, args.export, result): | |
if output or args.imshow: | |
if self.kie_model: | |
res_img = det_recog_show_result(arr, det_recog_result) | |
else: | |
res_img = det_recog_show_result( | |
arr, det_recog_result, out_file=output) | |
if args.imshow and not self.kie_model: | |
mmcv.imshow(res_img, 'inference results') | |
if not args.details: | |
simple_res = {} | |
simple_res['filename'] = det_recog_result['filename'] | |
simple_res['text'] = [ | |
x['text'] for x in det_recog_result['result'] | |
] | |
final_result = simple_res | |
else: | |
final_result = det_recog_result | |
if export: | |
mmcv.dump(final_result, export, indent=4) | |
if args.print_result: | |
print(final_result, end='\n\n') | |
final_results.append(final_result) | |
return final_results | |
# Post processing function for separate det/recog inference | |
def single_pp(self, result, model): | |
for arr, output, export, res in zip(self.args.arrays, self.args.output, | |
self.args.export, result): | |
if export: | |
mmcv.dump(res, export, indent=4) | |
if output or self.args.imshow: | |
res_img = model.show_result(arr, res, out_file=output) | |
if self.args.imshow: | |
mmcv.imshow(res_img, 'inference results') | |
if self.args.print_result: | |
print(res, end='\n\n') | |
return result | |
def generate_kie_labels(self, result, boxes, class_list): | |
idx_to_cls = {} | |
if class_list is not None: | |
for line in list_from_file(class_list): | |
class_idx, class_label = line.strip().split() | |
idx_to_cls[class_idx] = class_label | |
max_value, max_idx = torch.max(result['nodes'].detach().cpu(), -1) | |
node_pred_label = max_idx.numpy().tolist() | |
node_pred_score = max_value.numpy().tolist() | |
labels = [] | |
for i in range(len(boxes)): | |
pred_label = str(node_pred_label[i]) | |
if pred_label in idx_to_cls: | |
pred_label = idx_to_cls[pred_label] | |
pred_score = node_pred_score[i] | |
labels.append((pred_label, pred_score)) | |
return labels | |
def visualize_kie_output(self, | |
model, | |
data, | |
result, | |
out_file=None, | |
show=False): | |
"""Visualizes KIE output.""" | |
img_tensor = data['img'].data | |
img_meta = data['img_metas'].data | |
gt_bboxes = data['gt_bboxes'].data.numpy().tolist() | |
if img_tensor.dtype == torch.uint8: | |
# The img tensor is the raw input not being normalized | |
# (For SDMGR non-visual) | |
img = img_tensor.cpu().numpy().transpose(1, 2, 0) | |
else: | |
img = tensor2imgs( | |
img_tensor.unsqueeze(0), **img_meta.get('img_norm_cfg', {}))[0] | |
h, w, _ = img_meta.get('img_shape', img.shape) | |
img_show = img[:h, :w, :] | |
model.show_result( | |
img_show, result, gt_bboxes, show=show, out_file=out_file) | |
# End2end ocr inference pipeline | |
def det_recog_kie_inference(self, det_model, recog_model, kie_model=None): | |
end2end_res = [] | |
# Find bounding boxes in the images (text detection) | |
det_result = self.single_inference(det_model, self.args.arrays, | |
self.args.batch_mode, | |
self.args.det_batch_size) | |
bboxes_list = [res['boundary_result'] for res in det_result] | |
if kie_model: | |
kie_dataset = KIEDataset( | |
dict_file=kie_model.cfg.data.test.dict_file) | |
# For each bounding box, the image is cropped and | |
# sent to the recognition model either one by one | |
# or all together depending on the batch_mode | |
for filename, arr, bboxes, out_file in zip(self.args.filenames, | |
self.args.arrays, | |
bboxes_list, | |
self.args.output): | |
img_e2e_res = {} | |
img_e2e_res['filename'] = filename | |
img_e2e_res['result'] = [] | |
box_imgs = [] | |
for bbox in bboxes: | |
box_res = {} | |
box_res['box'] = [round(x) for x in bbox[:-1]] | |
box_res['box_score'] = float(bbox[-1]) | |
box = bbox[:8] | |
if len(bbox) > 9: | |
min_x = min(bbox[0:-1:2]) | |
min_y = min(bbox[1:-1:2]) | |
max_x = max(bbox[0:-1:2]) | |
max_y = max(bbox[1:-1:2]) | |
box = [ | |
min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y | |
] | |
box_img = crop_img(arr, box) | |
if self.args.batch_mode: | |
box_imgs.append(box_img) | |
else: | |
recog_result = model_inference(recog_model, box_img) | |
text = recog_result['text'] | |
text_score = recog_result['score'] | |
if isinstance(text_score, list): | |
text_score = sum(text_score) / max(1, len(text)) | |
box_res['text'] = text | |
box_res['text_score'] = text_score | |
img_e2e_res['result'].append(box_res) | |
if self.args.batch_mode: | |
recog_results = self.single_inference( | |
recog_model, box_imgs, True, self.args.recog_batch_size) | |
for i, recog_result in enumerate(recog_results): | |
text = recog_result['text'] | |
text_score = recog_result['score'] | |
if isinstance(text_score, (list, tuple)): | |
text_score = sum(text_score) / max(1, len(text)) | |
img_e2e_res['result'][i]['text'] = text | |
img_e2e_res['result'][i]['text_score'] = text_score | |
if self.args.merge: | |
img_e2e_res['result'] = stitch_boxes_into_lines( | |
img_e2e_res['result'], self.args.merge_xdist, 0.5) | |
if kie_model: | |
annotations = copy.deepcopy(img_e2e_res['result']) | |
# Customized for kie_dataset, which | |
# assumes that boxes are represented by only 4 points | |
for i, ann in enumerate(annotations): | |
min_x = min(ann['box'][::2]) | |
min_y = min(ann['box'][1::2]) | |
max_x = max(ann['box'][::2]) | |
max_y = max(ann['box'][1::2]) | |
annotations[i]['box'] = [ | |
min_x, min_y, max_x, min_y, max_x, max_y, min_x, max_y | |
] | |
ann_info = kie_dataset._parse_anno_info(annotations) | |
ann_info['ori_bboxes'] = ann_info.get('ori_bboxes', | |
ann_info['bboxes']) | |
ann_info['gt_bboxes'] = ann_info.get('gt_bboxes', | |
ann_info['bboxes']) | |
kie_result, data = model_inference( | |
kie_model, | |
arr, | |
ann=ann_info, | |
return_data=True, | |
batch_mode=self.args.batch_mode) | |
# visualize KIE results | |
self.visualize_kie_output( | |
kie_model, | |
data, | |
kie_result, | |
out_file=out_file, | |
show=self.args.imshow) | |
gt_bboxes = data['gt_bboxes'].data.numpy().tolist() | |
labels = self.generate_kie_labels(kie_result, gt_bboxes, | |
kie_model.class_list) | |
for i in range(len(gt_bboxes)): | |
img_e2e_res['result'][i]['label'] = labels[i][0] | |
img_e2e_res['result'][i]['label_score'] = labels[i][1] | |
end2end_res.append(img_e2e_res) | |
return end2end_res | |
# Separate det/recog inference pipeline | |
def single_inference(self, model, arrays, batch_mode, batch_size=0): | |
result = [] | |
if batch_mode: | |
if batch_size == 0: | |
result = model_inference(model, arrays, batch_mode=True) | |
else: | |
n = batch_size | |
arr_chunks = [ | |
arrays[i:i + n] for i in range(0, len(arrays), n) | |
] | |
for chunk in arr_chunks: | |
result.extend( | |
model_inference(model, chunk, batch_mode=True)) | |
else: | |
for arr in arrays: | |
result.append(model_inference(model, arr, batch_mode=False)) | |
return result | |
# Arguments pre-processing function | |
def _args_processing(self, args): | |
# Check if the input is a list/tuple that | |
# contains only np arrays or strings | |
if isinstance(args.img, (list, tuple)): | |
img_list = args.img | |
if not all([isinstance(x, (np.ndarray, str)) for x in args.img]): | |
raise AssertionError('Images must be strings or numpy arrays') | |
# Create a list of the images | |
if isinstance(args.img, str): | |
img_path = Path(args.img) | |
if img_path.is_dir(): | |
img_list = [str(x) for x in img_path.glob('*')] | |
else: | |
img_list = [str(img_path)] | |
elif isinstance(args.img, np.ndarray): | |
img_list = [args.img] | |
# Read all image(s) in advance to reduce wasted time | |
# re-reading the images for visualization output | |
args.arrays = [mmcv.imread(x) for x in img_list] | |
# Create a list of filenames (used for output images and result files) | |
if isinstance(img_list[0], str): | |
args.filenames = [str(Path(x).stem) for x in img_list] | |
else: | |
args.filenames = [str(x) for x in range(len(img_list))] | |
# If given an output argument, create a list of output image filenames | |
num_res = len(img_list) | |
if args.output: | |
output_path = Path(args.output) | |
if output_path.is_dir(): | |
args.output = [ | |
str(output_path / f'out_{x}.png') for x in args.filenames | |
] | |
else: | |
args.output = [str(args.output)] | |
if args.batch_mode: | |
raise AssertionError('Output of multiple images inference' | |
' must be a directory') | |
else: | |
args.output = [None] * num_res | |
# If given an export argument, create a list of | |
# result filenames for each image | |
if args.export: | |
export_path = Path(args.export) | |
args.export = [ | |
str(export_path / f'out_{x}.{args.export_format}') | |
for x in args.filenames | |
] | |
else: | |
args.export = [None] * num_res | |
return args | |
# Create an inference pipeline with parsed arguments | |
def main(): | |
args = parse_args() | |
ocr = MMOCR(**vars(args)) | |
ocr.readtext(**vars(args)) | |
if __name__ == '__main__': | |
main() | |