MMOCR / tests /test_models /test_recog_config.py
tomofi's picture
Add application file
2366e36
# Copyright (c) OpenMMLab. All rights reserved.
import copy
from os.path import dirname, exists, join
import numpy as np
import pytest
import torch
def _demo_mm_inputs(num_kernels=0, input_shape=(1, 3, 300, 300),
num_items=None): # yapf: disable
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple): Input batch dimensions.
num_items (None | list[int]): Specifies the number of boxes
for each batch item.
"""
(N, C, H, W) = input_shape
rng = np.random.RandomState(0)
imgs = rng.rand(*input_shape)
img_metas = [{
'img_shape': (H, W, C),
'ori_shape': (H, W, C),
'resize_shape': (H, W, C),
'filename': '<demo>.png',
'text': 'hello',
'valid_ratio': 1.0,
} for _ in range(N)]
mm_inputs = {
'imgs': torch.FloatTensor(imgs).requires_grad_(True),
'img_metas': img_metas
}
return mm_inputs
def _demo_gt_kernel_inputs(num_kernels=3, input_shape=(1, 3, 300, 300),
num_items=None): # yapf: disable
"""Create a superset of inputs needed to run test or train batches.
Args:
input_shape (tuple): Input batch dimensions.
num_items (None | list[int]): Specifies the number of boxes
for each batch item.
"""
from mmdet.core import BitmapMasks
(N, C, H, W) = input_shape
gt_kernels = []
for batch_idx in range(N):
kernels = []
for kernel_inx in range(num_kernels):
kernel = np.random.rand(H, W)
kernels.append(kernel)
gt_kernels.append(BitmapMasks(kernels, H, W))
return gt_kernels
def _get_config_directory():
"""Find the predefined detector config directory."""
try:
# Assume we are running in the source mmocr repo
repo_dpath = dirname(dirname(dirname(__file__)))
except NameError:
# For IPython development when this __file__ is not defined
import mmocr
repo_dpath = dirname(dirname(mmocr.__file__))
config_dpath = join(repo_dpath, 'configs')
if not exists(config_dpath):
raise Exception('Cannot find config path')
return config_dpath
def _get_config_module(fname):
"""Load a configuration as a python module."""
from mmcv import Config
config_dpath = _get_config_directory()
config_fpath = join(config_dpath, fname)
config_mod = Config.fromfile(config_fpath)
return config_mod
def _get_detector_cfg(fname):
"""Grab configs necessary to create a detector.
These are deep copied to allow for safe modification of parameters without
influencing other tests.
"""
config = _get_config_module(fname)
model = copy.deepcopy(config.model)
return model
@pytest.mark.parametrize('cfg_file', [
'textrecog/sar/sar_r31_parallel_decoder_academic.py',
'textrecog/sar/sar_r31_parallel_decoder_toy_dataset.py',
'textrecog/sar/sar_r31_sequential_decoder_academic.py',
'textrecog/crnn/crnn_toy_dataset.py',
'textrecog/crnn/crnn_academic_dataset.py',
'textrecog/nrtr/nrtr_r31_1by16_1by8_academic.py',
'textrecog/nrtr/nrtr_modality_transform_academic.py',
'textrecog/nrtr/nrtr_modality_transform_toy_dataset.py',
'textrecog/nrtr/nrtr_r31_1by8_1by4_academic.py',
'textrecog/robust_scanner/robustscanner_r31_academic.py',
'textrecog/seg/seg_r31_1by16_fpnocr_academic.py',
'textrecog/seg/seg_r31_1by16_fpnocr_toy_dataset.py',
'textrecog/satrn/satrn_academic.py', 'textrecog/satrn/satrn_small.py',
'textrecog/tps/crnn_tps_academic_dataset.py'
])
def test_recognizer_pipeline(cfg_file):
model = _get_detector_cfg(cfg_file)
model['pretrained'] = None
from mmocr.models import build_detector
detector = build_detector(model)
input_shape = (1, 3, 32, 160)
if 'crnn' in cfg_file:
input_shape = (1, 1, 32, 160)
mm_inputs = _demo_mm_inputs(0, input_shape)
gt_kernels = None
if 'seg' in cfg_file:
gt_kernels = _demo_gt_kernel_inputs(3, input_shape)
imgs = mm_inputs.pop('imgs')
img_metas = mm_inputs.pop('img_metas')
# Test forward train
if 'seg' in cfg_file:
losses = detector.forward(imgs, img_metas, gt_kernels=gt_kernels)
else:
losses = detector.forward(imgs, img_metas)
assert isinstance(losses, dict)
# Test forward test
with torch.no_grad():
img_list = [g[None, :] for g in imgs]
batch_results = []
for one_img, one_meta in zip(img_list, img_metas):
result = detector.forward([one_img], [[one_meta]],
return_loss=False)
batch_results.append(result)
# Test show_result
results = {'text': 'hello', 'score': 1.0}
img = np.random.rand(5, 5, 3)
detector.show_result(img, results)