# Copyright (c) OpenMMLab. All rights reserved. import argparse import os.path as osp from functools import partial import mmcv import numpy as np from mmocr.utils import bezier_to_polygon, sort_points # The default dictionary used by CurvedSynthText dict95 = [ ' ', '!', '"', '#', '$', '%', '&', '\'', '(', ')', '*', '+', ',', '-', '.', '/', '0', '1', '2', '3', '4', '5', '6', '7', '8', '9', ':', ';', '<', '=', '>', '?', '@', 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M', 'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z', '[', '\\', ']', '^', '_', '`', 'a', 'b', 'c', 'd', 'e', 'f', 'g', 'h', 'i', 'j', 'k', 'l', 'm', 'n', 'o', 'p', 'q', 'r', 's', 't', 'u', 'v', 'w', 'x', 'y', 'z', '{', '|', '}', '~' ] UNK = len(dict95) EOS = UNK + 1 def digit2text(rec): res = [] for d in rec: assert d <= EOS if d == EOS: break if d == UNK: print('Warning: Has a UNK character') res.append('口') # Or any special character not in the target dict res.append(dict95[d]) return ''.join(res) def modify_annotation(ann, num_sample, start_img_id=0, start_ann_id=0): ann['text'] = digit2text(ann.pop('rec')) # Get hide egmentation points polygon_pts = bezier_to_polygon(ann['bezier_pts'], num_sample=num_sample) ann['segmentation'] = np.asarray(sort_points(polygon_pts)).reshape( 1, -1).tolist() ann['image_id'] += start_img_id ann['id'] += start_ann_id return ann def modify_image_info(image_info, path_prefix, start_img_id=0): image_info['file_name'] = osp.join(path_prefix, image_info['file_name']) image_info['id'] += start_img_id return image_info def parse_args(): parser = argparse.ArgumentParser( description='Convert CurvedSynText150k to COCO format') parser.add_argument('root_path', help='CurvedSynText150k root path') parser.add_argument('-o', '--out-dir', help='Output path') parser.add_argument( '-n', '--num-sample', type=int, default=4, help='Number of sample points at each Bezier curve.') parser.add_argument( '--nproc', default=1, type=int, help='Number of processes') args = parser.parse_args() return args def convert_annotations(data, path_prefix, num_sample, nproc, start_img_id=0, start_ann_id=0): modify_image_info_with_params = partial( modify_image_info, path_prefix=path_prefix, start_img_id=start_img_id) modify_annotation_with_params = partial( modify_annotation, num_sample=num_sample, start_img_id=start_img_id, start_ann_id=start_ann_id) if nproc > 1: data['annotations'] = mmcv.track_parallel_progress( modify_annotation_with_params, data['annotations'], nproc=nproc) data['images'] = mmcv.track_parallel_progress( modify_image_info_with_params, data['images'], nproc=nproc) else: data['annotations'] = mmcv.track_progress( modify_annotation_with_params, data['annotations']) data['images'] = mmcv.track_progress( modify_image_info_with_params, data['images'], ) data['categories'] = [{'id': 1, 'name': 'text'}] return data def main(): args = parse_args() root_path = args.root_path out_dir = args.out_dir if args.out_dir else root_path mmcv.mkdir_or_exist(out_dir) anns = mmcv.load(osp.join(root_path, 'train1.json')) data1 = convert_annotations(anns, 'syntext_word_eng', args.num_sample, args.nproc) # Get the maximum image id from data1 start_img_id = max(data1['images'], key=lambda x: x['id'])['id'] + 1 start_ann_id = max(data1['annotations'], key=lambda x: x['id'])['id'] + 1 anns = mmcv.load(osp.join(root_path, 'train2.json')) data2 = convert_annotations( anns, 'emcs_imgs', args.num_sample, args.nproc, start_img_id=start_img_id, start_ann_id=start_ann_id) data1['images'] += data2['images'] data1['annotations'] += data2['annotations'] mmcv.dump(data1, osp.join(out_dir, 'instances_training.json')) if __name__ == '__main__': main()