# Copyright (c) OpenMMLab. All rights reserved. import torch import torch.nn as nn import torch.nn.functional as F from torch.nn import init class MeanAggregator(nn.Module): def forward(self, features, A): x = torch.bmm(A, features) return x class GraphConv(nn.Module): def __init__(self, in_dim, out_dim): super().__init__() self.in_dim = in_dim self.out_dim = out_dim self.weight = nn.Parameter(torch.FloatTensor(in_dim * 2, out_dim)) self.bias = nn.Parameter(torch.FloatTensor(out_dim)) init.xavier_uniform_(self.weight) init.constant_(self.bias, 0) self.aggregator = MeanAggregator() def forward(self, features, A): b, n, d = features.shape assert d == self.in_dim agg_feats = self.aggregator(features, A) cat_feats = torch.cat([features, agg_feats], dim=2) out = torch.einsum('bnd,df->bnf', cat_feats, self.weight) out = F.relu(out + self.bias) return out class GCN(nn.Module): """Graph convolutional network for clustering. This was from repo https://github.com/Zhongdao/gcn_clustering licensed under the MIT license. Args: feat_len(int): The input node feature length. """ def __init__(self, feat_len): super(GCN, self).__init__() self.bn0 = nn.BatchNorm1d(feat_len, affine=False).float() self.conv1 = GraphConv(feat_len, 512) self.conv2 = GraphConv(512, 256) self.conv3 = GraphConv(256, 128) self.conv4 = GraphConv(128, 64) self.classifier = nn.Sequential( nn.Linear(64, 32), nn.PReLU(32), nn.Linear(32, 2)) def forward(self, x, A, knn_inds): num_local_graphs, num_max_nodes, feat_len = x.shape x = x.view(-1, feat_len) x = self.bn0(x) x = x.view(num_local_graphs, num_max_nodes, feat_len) x = self.conv1(x, A) x = self.conv2(x, A) x = self.conv3(x, A) x = self.conv4(x, A) k = knn_inds.size(-1) mid_feat_len = x.size(-1) edge_feat = torch.zeros((num_local_graphs, k, mid_feat_len), device=x.device) for graph_ind in range(num_local_graphs): edge_feat[graph_ind, :, :] = x[graph_ind, knn_inds[graph_ind]] edge_feat = edge_feat.view(-1, mid_feat_len) pred = self.classifier(edge_feat) return pred