# Copyright (c) OpenMMLab. All rights reserved. import argparse import glob import os import os.path as osp import re import cv2 import mmcv import numpy as np import scipy.io as scio import yaml from shapely.geometry import Polygon from mmocr.utils import convert_annotations def collect_files(img_dir, gt_dir, split): """Collect all images and their corresponding groundtruth files. Args: img_dir(str): The image directory gt_dir(str): The groundtruth directory split(str): The split of dataset. Namely: training or test Returns: files(list): The list of tuples (img_file, groundtruth_file) """ assert isinstance(img_dir, str) assert img_dir assert isinstance(gt_dir, str) assert gt_dir # note that we handle png and jpg only. Pls convert others such as gif to # jpg or png offline suffixes = ['.png', '.PNG', '.jpg', '.JPG', '.jpeg', '.JPEG'] # suffixes = ['.png'] imgs_list = [] for suffix in suffixes: imgs_list.extend(glob.glob(osp.join(img_dir, '*' + suffix))) imgs_list = sorted(imgs_list) ann_list = sorted( [osp.join(gt_dir, gt_file) for gt_file in os.listdir(gt_dir)]) files = list(zip(imgs_list, ann_list)) assert len(files), f'No images found in {img_dir}' print(f'Loaded {len(files)} images from {img_dir}') return files def collect_annotations(files, nproc=1): """Collect the annotation information. Args: files(list): The list of tuples (image_file, groundtruth_file) nproc(int): The number of process to collect annotations Returns: images(list): The list of image information dicts """ assert isinstance(files, list) assert isinstance(nproc, int) if nproc > 1: images = mmcv.track_parallel_progress( load_img_info, files, nproc=nproc) else: images = mmcv.track_progress(load_img_info, files) return images def get_contours_mat(gt_path): """Get the contours and words for each ground_truth mat file. Args: gt_path(str): The relative path of the ground_truth mat file Returns: contours(list[lists]): A list of lists of contours for the text instances words(list[list]): A list of lists of words (string) for the text instances """ assert isinstance(gt_path, str) contours = [] words = [] data = scio.loadmat(gt_path) # 'gt' for the latest version; 'polygt' for the legacy version data_polygt = data.get('polygt', data['gt']) for i, lines in enumerate(data_polygt): X = np.array(lines[1]) Y = np.array(lines[3]) point_num = len(X[0]) word = lines[4] if len(word) == 0: word = '???' else: word = word[0] if word == '#': word = '###' continue words.append(word) arr = np.concatenate([X, Y]).T contour = [] for i in range(point_num): contour.append(arr[i][0]) contour.append(arr[i][1]) contours.append(np.asarray(contour)) return contours, words def load_mat_info(img_info, gt_file): """Load the information of one ground truth in .mat format. Args: img_info(dict): The dict of only the image information gt_file(str): The relative path of the ground_truth mat file for one image Returns: img_info(dict): The dict of the img and annotation information """ assert isinstance(img_info, dict) assert isinstance(gt_file, str) contours, texts = get_contours_mat(gt_file) anno_info = [] for contour, text in zip(contours, texts): if contour.shape[0] == 2: continue category_id = 1 coordinates = np.array(contour).reshape(-1, 2) polygon = Polygon(coordinates) iscrowd = 0 area = polygon.area # convert to COCO style XYWH format min_x, min_y, max_x, max_y = polygon.bounds bbox = [min_x, min_y, max_x - min_x, max_y - min_y] anno = dict( iscrowd=iscrowd, category_id=category_id, bbox=bbox, area=area, text=text, segmentation=[contour]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def process_line(line, contours, words): """Get the contours and words by processing each line in the gt file. Args: line(str): The line in gt file containing annotation info contours(list[lists]): A list of lists of contours for the text instances words(list[list]): A list of lists of words (string) for the text instances Returns: contours(list[lists]): A list of lists of contours for the text instances words(list[list]): A list of lists of words (string) for the text instances """ line = '{' + line.replace('[[', '[').replace(']]', ']') + '}' ann_dict = re.sub('([0-9]) +([0-9])', r'\1,\2', line) ann_dict = re.sub('([0-9]) +([ 0-9])', r'\1,\2', ann_dict) ann_dict = re.sub('([0-9]) -([0-9])', r'\1,-\2', ann_dict) ann_dict = ann_dict.replace("[u',']", "[u'#']") ann_dict = yaml.safe_load(ann_dict) X = np.array([ann_dict['x']]) Y = np.array([ann_dict['y']]) if len(ann_dict['transcriptions']) == 0: word = '???' else: word = ann_dict['transcriptions'][0] if len(ann_dict['transcriptions']) > 1: for ann_word in ann_dict['transcriptions'][1:]: word += ',' + ann_word word = str(eval(word)) words.append(word) point_num = len(X[0]) arr = np.concatenate([X, Y]).T contour = [] for i in range(point_num): contour.append(arr[i][0]) contour.append(arr[i][1]) contours.append(np.asarray(contour)) return contours, words def get_contours_txt(gt_path): """Get the contours and words for each ground_truth txt file. Args: gt_path(str): The relative path of the ground_truth mat file Returns: contours(list[lists]): A list of lists of contours for the text instances words(list[list]): A list of lists of words (string) for the text instances """ assert isinstance(gt_path, str) contours = [] words = [] with open(gt_path, 'r') as f: tmp_line = '' for idx, line in enumerate(f): line = line.strip() if idx == 0: tmp_line = line continue if not line.startswith('x:'): tmp_line += ' ' + line continue else: complete_line = tmp_line tmp_line = line contours, words = process_line(complete_line, contours, words) if tmp_line != '': contours, words = process_line(tmp_line, contours, words) words = ['###' if word == '#' else word for word in words] return contours, words def load_txt_info(gt_file, img_info): """Load the information of one ground truth in .txt format. Args: img_info(dict): The dict of only the image information gt_file(str): The relative path of the ground_truth mat file for one image Returns: img_info(dict): The dict of the img and annotation information """ contours, texts = get_contours_txt(gt_file) anno_info = [] for contour, text in zip(contours, texts): if contour.shape[0] == 2: continue category_id = 1 coordinates = np.array(contour).reshape(-1, 2) polygon = Polygon(coordinates) iscrowd = 0 area = polygon.area # convert to COCO style XYWH format min_x, min_y, max_x, max_y = polygon.bounds bbox = [min_x, min_y, max_x - min_x, max_y - min_y] anno = dict( iscrowd=iscrowd, category_id=category_id, bbox=bbox, area=area, text=text, segmentation=[contour]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def load_png_info(gt_file, img_info): """Load the information of one ground truth in .png format. Args: gt_file(str): The relative path of the ground_truth file for one image img_info(dict): The dict of only the image information Returns: img_info(dict): The dict of the img and annotation information """ assert isinstance(gt_file, str) assert isinstance(img_info, dict) gt_img = cv2.imread(gt_file, 0) contours, _ = cv2.findContours(gt_img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) anno_info = [] for contour in contours: if contour.shape[0] == 2: continue category_id = 1 xy = np.array(contour).flatten().tolist() coordinates = np.array(contour).reshape(-1, 2) polygon = Polygon(coordinates) iscrowd = 0 area = polygon.area # convert to COCO style XYWH format min_x, min_y, max_x, max_y = polygon.bounds bbox = [min_x, min_y, max_x - min_x, max_y - min_y] anno = dict( iscrowd=iscrowd, category_id=category_id, bbox=bbox, area=area, segmentation=[xy]) anno_info.append(anno) img_info.update(anno_info=anno_info) return img_info def load_img_info(files): """Load the information of one image. Args: files(tuple): The tuple of (img_file, groundtruth_file) Returns: img_info(dict): The dict of the img and annotation information """ assert isinstance(files, tuple) img_file, gt_file = files # read imgs with ignoring orientations img = mmcv.imread(img_file, 'unchanged') split_name = osp.basename(osp.dirname(img_file)) img_info = dict( # remove img_prefix for filename file_name=osp.join(split_name, osp.basename(img_file)), height=img.shape[0], width=img.shape[1], # anno_info=anno_info, segm_file=osp.join(split_name, osp.basename(gt_file))) if osp.splitext(gt_file)[1] == '.mat': img_info = load_mat_info(img_info, gt_file) elif osp.splitext(gt_file)[1] == '.txt': img_info = load_txt_info(gt_file, img_info) else: raise NotImplementedError return img_info def parse_args(): parser = argparse.ArgumentParser( description='Convert totaltext annotations to COCO format') parser.add_argument('root_path', help='totaltext root path') parser.add_argument('-o', '--out-dir', help='output path') parser.add_argument( '--split-list', nargs='+', help='a list of splits. e.g., "--split_list training test"') parser.add_argument( '--nproc', default=1, type=int, help='number of process') args = parser.parse_args() return args def main(): args = parse_args() root_path = args.root_path out_dir = args.out_dir if args.out_dir else root_path mmcv.mkdir_or_exist(out_dir) img_dir = osp.join(root_path, 'imgs') gt_dir = osp.join(root_path, 'annotations') set_name = {} for split in args.split_list: set_name.update({split: 'instances_' + split + '.json'}) assert osp.exists(osp.join(img_dir, split)) for split, json_name in set_name.items(): print(f'Converting {split} into {json_name}') with mmcv.Timer( print_tmpl='It takes {}s to convert totaltext annotation'): files = collect_files( osp.join(img_dir, split), osp.join(gt_dir, split), split) image_infos = collect_annotations(files, nproc=args.nproc) convert_annotations(image_infos, osp.join(out_dir, json_name)) if __name__ == '__main__': main()