File size: 5,640 Bytes
f11d54b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import streamlit as st
from dotenv import load_dotenv
from langchain.text_splitter import CharacterTextSplitter, RecursiveCharacterTextSplitter
from langchain.vectorstores import FAISS
from langchain.embeddings import HuggingFaceEmbeddings  # General embeddings from HuggingFace models.
from langchain.memory import ConversationBufferMemory
from langchain.chains import ConversationalRetrievalChain
from htmlTemplates import css, bot_template, user_template
from langchain.llms import LlamaCpp  # For loading transformer models.
from langchain.document_loaders import PyPDFLoader, TextLoader, JSONLoader, CSVLoader
from tempfile import NamedTemporaryFile
from huggingface_hub import hf_hub_download


def get_pdf_text(pdf_docs):
    with NamedTemporaryFile() as temp_file:
        temp_file.write(pdf_docs.getvalue())
        temp_file.seek(0)
        pdf_loader = PyPDFLoader(temp_file.name)
        pdf_doc = pdf_loader.load()
        return pdf_doc


def get_text_file(docs):
    with NamedTemporaryFile() as temp_file:
        temp_file.write(docs.getvalue())
        temp_file.seek(0)
        text_loader = TextLoader(temp_file.name)
        text_doc = text_loader.load()

        return text_doc


def get_csv_file(docs):
    with NamedTemporaryFile() as temp_file:
        temp_file.write(docs.getvalue())
        temp_file.seek(0)
        text_loader = CSVLoader(temp_file.name)
        text_doc = text_loader.load()

        return text_doc


def get_json_file(docs):
    with NamedTemporaryFile() as temp_file:
        temp_file.write(docs.getvalue())
        temp_file.seek(0)
        json_loader = JSONLoader(temp_file.name,
                                 jq_schema='.scans[].relationships',
                                 text_content=False)
        json_doc = json_loader.load()

        return json_doc


def get_text_chunks(documents):
    text_splitter = RecursiveCharacterTextSplitter(
        chunk_size=1000,
        chunk_overlap=200,
        length_function=len
    )

    documents = text_splitter.split_documents(documents)
    return documents


def get_vectorstore(text_chunks):
    # Load the desired embeddings model.
    embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L12-v2',
                                       model_kwargs={'device': 'cpu'})
    vectorstore = FAISS.from_documents(text_chunks, embeddings)
    return vectorstore


def get_conversation_chain(vectorstore):
    model_name_or_path = 'TheBloke/Llama-2-7B-chat-GGUF'
    model_basename = 'llama-2-7b-chat.Q2_K.gguf'
    model_path = hf_hub_download(repo_id=model_name_or_path, filename=model_basename)

    llm = LlamaCpp(model_path=model_path,
                   n_ctx=4086,
                   input={"temperature": 0.75, "max_length": 2000, "top_p": 1},
                   verbose=True, )
    memory = ConversationBufferMemory(
        memory_key='chat_history', return_messages=True)
    conversation_chain = ConversationalRetrievalChain.from_llm(
        llm=llm,
        retriever=vectorstore.as_retriever(),
        memory=memory
    )
    return conversation_chain


def handle_userinput(user_question):
    print('user_question =>  ', user_question)
    response = st.session_state.conversation({'question': user_question})
    st.session_state.chat_history = response['chat_history']

    for i, message in enumerate(st.session_state.chat_history):
        if i % 2 == 0:
            st.write(user_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)
        else:
            st.write(bot_template.replace(
                "{{MSG}}", message.content), unsafe_allow_html=True)


def main():
    load_dotenv()
    st.set_page_config(page_title="Chat with multiple PDFs",
                       page_icon=":books:")
    st.write(css, unsafe_allow_html=True)

    if "conversation" not in st.session_state:
        st.session_state.conversation = None
    if "chat_history" not in st.session_state:
        st.session_state.chat_history = None

    st.header("Chat with multiple PDFs :books:")
    user_question = st.text_input("Ask a question about your documents:")
    if user_question:
        handle_userinput(user_question)

    with st.sidebar:
        st.subheader("Your documents")
        docs = st.file_uploader(
            "Upload your PDFs here and click on 'Process'", accept_multiple_files=True)
        if st.button("Process"):
            with st.spinner("Processing"):
                # get pdf text
                doc_list = []

                for file in docs:
                    print('file - type : ', file.type)
                    if file.type == 'text/plain':
                        # file is .txt
                        doc_list.extend(get_text_file(file))
                    elif file.type in ['application/octet-stream', 'application/pdf']:
                        # file is .pdf
                        doc_list.extend(get_pdf_text(file))
                    elif file.type == 'text/csv':
                        # file is .csv
                        doc_list.extend(get_csv_file(file))
                    elif file.type == 'application/json':
                        # file is .json
                        doc_list.extend(get_json_file(file))

                # get the text chunks
                text_chunks = get_text_chunks(doc_list)

                # create vector store
                vectorstore = get_vectorstore(text_chunks)

                # create conversation chain
                st.session_state.conversation = get_conversation_chain(
                    vectorstore)


if __name__ == '__main__':
    main()